UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the survival and genomic stability of epidermal melanocytes is critical for inhibiting photocarcinogenesis, particularly melanoma, the most deadly form of skin cancer. The paracrine factors alpha-melanocortin and endothelin-1 are critical for the melanogenic response of cultured human melanocytes to UV radiation. We report that alpha-melanocortin and endothelin-1 rescued human melanocytes from UV radiation-induced apoptosis and reduced DNA photoproducts and oxidative stress. The survival effects of alpha-melanocortin and endothelin-1 were mediated by activation of the melanocortin 1 and endothelin receptors, respectively. Treatment of melanocytes with alpha-melanocortin and/or endothelin-1 before exposure to UV radiation activated the inositol triphosphate kinase-Akt pathway and increased the phosphorylation and expression of the microphthalmia-related transcription factor. Treatment with alpha-melanocortin and/or endothelin-1 enhanced the repair of cyclobutane pyrimidine dimers and reduced the levels of hydrogen peroxide induced by UV radiation. These effects are expected to reduce genomic instability and mutagenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-4535DOI Listing

Publication Analysis

Top Keywords

alpha-melanocortin endothelin-1
16
human melanocytes
12
melanocytes radiation
8
skin cancer
8
epidermal melanocytes
8
alpha-melanocortin and/or
8
and/or endothelin-1
8
alpha-melanocortin
6
melanocytes
6
endothelin-1
5

Similar Publications

Human melanocyte homeostasis is sustained by paracrine factors that reduce the genotoxic effects of ultraviolet radiation (UV), the major etiological factor for melanoma. The keratinocyte-derived endothelin-1 (End-1) and α-melanocyte-stimulating hormone (α-MSH) regulate human melanocyte function, proliferation and survival, and enhance repair of UV-induced DNA photoproducts by binding to the G - and G -protein-coupled endothelin B receptor (EDNRB), and the G -protein-coupled melanocortin 1 receptor (MC1R), respectively. We hereby report that End-1 and α-MSH regulate common effectors of the DNA damage response to UV, despite distinct signaling pathways.

View Article and Find Full Text PDF

UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!