Lipase-catalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium.

J Biotechnol

Department of Food Science and Agricultural Chemistry, McGill University, 21,111 Lakeshore, Ste-Anne de Bellevue, Que., Canada H9X 3V9.

Published: September 2005

Biosynthesis of cinnamoylated lipids through the lipase-catalyzed transesterification reaction of cinnamic acid with triolein was investigated in organic solvent media. Electrospray ionization-mass spectroscopy (ESI-MS) structural analysis of the reaction mixture revealed the formation of two major end products, monoleyl-1(3)-cinnamate and dioleyl-2-cinnamate. Decreasing the molar ratio of cinnamic acid to triolein from 1:1 to 1:4.5 resulted in an increase in the maximum bioconversion yield of cinnamoylated lipids from 19 to 42%, which remained constant at a lower ratio of 1:6. However, an excess of triolein appeared to have a more beneficial effect on the formation of dioleyl-2-cinnamate than monoleyl-1(3)-cinnamate, leading to different end product compositions at ratios of substrates. With cinnamic acid to triolein ratios of 1:4.5 and 1:6.0, an increase in the bioconversion yield of cinnamoylated lipids to 55% was achieved by adding 2.2 mgmL(-1) silica gel to the reaction mixture. Radical scavenging activity of cinnamoylated lipids, with 50% of radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, was found to be higher than that of its corresponding phenolic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2005.03.012DOI Listing

Publication Analysis

Top Keywords

cinnamoylated lipids
20
cinnamic acid
12
acid triolein
12
biosynthesis cinnamoylated
8
organic solvent
8
reaction mixture
8
bioconversion yield
8
yield cinnamoylated
8
cinnamoylated
5
lipids
5

Similar Publications

Cinnamoyl lipids as novel signaling molecules modulate the physiological metabolism of cross-phylum microorganisms.

Commun Biol

October 2024

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Signaling systems of microorganisms are responsible for regulating the physiological and metabolic processes and also play vital roles in the communications of cells. Identifying signaling molecules mediating the cross-talks is challenging yet highly desirable for comprehending the microbial interactions. Here, we demonstrate that a pathogenic Gram-negative Chromobacterium violaceum exerts significant influence on the morphological differentiation and secondary metabolism of Gram-positive Streptomyces.

View Article and Find Full Text PDF

In gastrointestinal (GI) diseases, lipopolysaccharide (LPS) exacerbates gut-barrier dysfunction and inflammation. Cinnamoyl derivatives show potential in mitigating LPS-induced inflammation. We assessed intestinal epithelial barrier function using -epithelial electrical resistance values and measured inflammatory mediators through real-time PCR and ELISA in Caco-2 cells.

View Article and Find Full Text PDF

Pipersarmenoids, new amide alkaloids from Piper sarmentosum.

Fitoterapia

September 2024

College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. Electronic address:

A chemical investigation of the aerial parts of Piper sarmentosum resulted in the isolation and identification of 14 amide alkaloids, including three new amide alkaloids, pipersarmenoids A - C (1-3), three new natural amide alkaloids, pipersarmenoids D - F (4-6), and 8 known analogues, N-p-coumaroyltyramine (7), piperlotine C (8), piperlotine D (9), pellitorine (10), sarmentine (11), aurantiamide acetate (12), 1-cinnamoyl pyrrolidine (13) and sarmentamide B (14). Their structures were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR. The cytotoxicity, neuroinflammation-inhibiting and acetylcholinesterase (AChE) inhibitory activities of those compounds were tested.

View Article and Find Full Text PDF

Background: Murraya tetramera Huang is a traditional Chinese woody medicine. Its leaves contain flavonoids, alkaloids, and other active compounds, which have anti-inflammatory and analgesic effects, as well as hypoglycemic and lipid-lowering effects, and anti-tumor effects. There are significant differences in the content of flavonoids and alkaloids in leaves during different growth cycles, but the synthesis mechanism is still unclear.

View Article and Find Full Text PDF

Cinnamosyn, a Cinnamoylated Synthetic-Bioinformatic Natural Product with Cytotoxic Activity.

Org Lett

May 2024

Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States.

Most biosynthetic gene clusters (BGCs) are functionally inaccessible by using fermentation methods. Bioinformatic-coupled total synthesis provides an alternative approach for accessing BGC-encoded bioactivities. To date, synthetic bioinformatic natural product (synBNP) methods have focused on lipopeptides containing simple lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!