The general approach to estimate the displacement of rounded objects (specifically, gas bubbles and solid spheres) in elastic incompressible media in response to applied acoustic radiation force is presented. In this study, both static displacement and transient motion are analyzed using the linear approximation. To evaluate the static displacement of the spherical inclusion, equations coupling the applied force, displacement, and shear modulus of the elastic medium are derived. Analytical expressions to estimate the static displacement of solid spheres and gas bubbles are presented. Under a continuously applied static force, both the solid sphere and the initially spherical gas bubble are displaced, and the bubble is deformed. The transient responses of the inclusions are described using motion equations. The displacements of the inclusion in elastic incompressible lossless media are analyzed using both frequency-domain and time-domain formalism, and the equations of motion are derived for both a solid sphere and a gas bubble. For a short pulsed force, an analytical solution for the equations of motion is presented. Finally, transient displacement of the gas bubble in viscoelastic media is considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.1863672 | DOI Listing |
Retin Cases Brief Rep
January 2025
The Retina Service of Wills Eye Hospital, Wills Eye Physicians-Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA.
Purpose: To illustrate a technique for the removal of subretinal gas via pars plana vitrectomy (PPV) with air-fluid exchange and simultaneous manipulation with scleral depression.
Methods: PPV to remove subretinal gas causing persistent macula-off retinal detachment was performed in one eye, and the results were evaluated in this case report. Ports were carefully placed to avoid puncturing the retina, which was significantly displaced anteriorly past the ora serrata due to the buoyancy of the subretinal gas with the patient in a supine position.
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
High dam discharge can lead to total dissolved gas (TDG) supersaturation in downstream rivers, causing fish to suffer from bubble trauma and even mortality. Focusing on the Datengxia hydropower station in the Xijiang River basin, we conducted in-situ experiments to explore the tolerance patterns of economic fish species, including Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella, under the influence of TDG supersaturation at different compensation depths. Moreover, the development and recovery patterns of bubble trauma and the swimming ability of fish exposed to TDG supersaturated water were investigated.
View Article and Find Full Text PDFInt Marit Health
January 2025
National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Poland.
Medical hyperbaric sessions for Hyperbaric Oxygen Therapy, conducted at 2.4-2.5 ATA for 80 to 120 minutes, expose staff to increased risk of DCS due to the inhalation of compressed air, which increases gas solubility in body fluids as per Henry's Law.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Qingdao Sunefire Science & Technology Shares Co., Ltd, Qingdao 266423, China.
ACS Omega
December 2024
Petroleum Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261,Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!