Loss of actin stress fibers has been associated with cell transformation and metastasis. TGF-beta induction of stress fibers in epithelial cells requires high molecular weight tropomyosins encoded by TPM1 and TPM2 genes. Here, we investigated the mechanism underlying the failure of TGF-beta to induce stress fibers and inhibit cell migration in metastatic cells. RT-PCR analysis in carcinoma cell lines revealed a significant reduction in TPM1 transcripts in metastatic MDA-MB-231, MDA-MB-435 and SW620 cell lines. Treatment of these cells with demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) increased mRNA levels of TPM1 with no effect on TPM2. Importantly, 5-aza-dC treatment of MDA-MB-231 cells restored TGF-beta induction of TPM1 and formation of stress fibers. Forced expression of TPM1 by using Tet-Off system increased stress fibers in MDA-MB-231 cells and reduced cell migration. A potential CpG island spanning the TPM1 proximal promoter, exon 1, and the beginning of intron 1 was identified. Bisulfite sequencing showed significant cytosine methylation in metastatic cell lines that correlated with a reduced expression of TPM1. Together these results suggest that epigenetic suppression of TPM1 may alter TGF-beta tumor suppressor function and contribute to metastatic properties of tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208688DOI Listing

Publication Analysis

Top Keywords

stress fibers
20
cell lines
12
tumor suppressor
8
suppressor function
8
tgf-beta induction
8
tpm1
8
tpm1 tpm2
8
cell migration
8
mda-mb-231 cells
8
expression tpm1
8

Similar Publications

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.

View Article and Find Full Text PDF

This study investigates the impact of carding and blending recycled carbon fibers (rCF) with crimped thermoplastic polypropylene (PP) fibers on the mechanical properties of rCF, using a Weibull statistical approach. Tensile properties of rCF were evaluated before and after carding with varying rCF/PP blend ratios (100/0%, 85/15%, 70/30%, and 50/50%). A comparison between the two-parameter and three-parameter Weibull models showed that the two-parameter model provided a better fit for rCF properties before carding.

View Article and Find Full Text PDF

Adding expansion agents to compensate for concrete shrinkage is a common crack resistance technique, but excessive expansion can also increase the porosity of concrete and reduce its strength. The addition of fibers can reduce expansion and improve the compactness of concrete. However, too little fiber will not be effective in inhibition, while too much fiber will cause aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!