The effect of glycerol on the micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and of the ethoxylated nonionic surfactant Brij 58 has been investigated by various experimental techniques. For both surfactants the critical micellar concentration (cmc), determined by surface tension measurements, is almost unaffected by the presence of glycerol in the mixture; only at high glycerol concentrations (>/=20% w/w) does the cmc significantly increase. The area per surfactant molecule at the air-solution interface, A, increases with increasing glycerol weight percentage, w(g). Fluorescence quenching measurements indicate that the presence of glycerol induces a lowering of the aggregation number of both surfactants. The glycerol intradiffusion coefficient has been measured by the pulsed-gradient spin-echo NMR technique as a function of glycerol content at constant surfactant concentration. It is almost unaffected by the presence of the surfactants, indicating that no direct glycerol-surfactant interaction occurs in the mixture. The surfactant intradiffusion coefficient has been also measured. In the case of CTAB, it increases with increasing glycerol concentration, a reflection of the decreased aggregation number. For Brij 58, in spite of the lowering of the aggregation number, the surfactant intradiffusion coefficient decreases with increasing glycerol concentration, suggesting an increase of the intermicellar interaction. The experimental evidence shows that for both surfactants the micellization is affected by the presence of glycerol through an indirect, solvent-mediated mechanism. In the case of CTAB, the main effect of glycerol is a lowering of the medium dielectric constant, which enhances the electrostatic interactions in solution. In the case of Brij 58, the results can be interpreted in terms of a salting-out effect according to which glycerol competes with the surfactant for water molecules, causing a dehydration of the surfactant ethoxylic headgroup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.01.030 | DOI Listing |
J Sci Food Agric
January 2025
School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China.
Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.
Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Dalhousie University, 1459 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
We extend our previous work on the energetics and mechanisms of fragmentation in the mass spectrometry of triacylglycerols (TAGs). Previously, we proposed viable mechanisms for the collision-induced fragmentation of lithiated tripropionylglycerol using triple-quadrupole mass spectrometry. In this work, we used a QqLIT mass spectrometer to study both double- and triple-stage spectra from a range of TAGs having acid chains of types AAA (identical acid chains), AAB, ABA, and ABC, with chain lengths of 6-18 carbon atoms; we also studied some TAGs having a single double bond in the Δ-9 position.
View Article and Find Full Text PDFNat Commun
January 2025
School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea. Electronic address:
This study aimed to synthesize purpurin-18-N-aminoimide methyl ester (P18 N AI ME) and encapsulate it into lipid nanovesicles (LNVs) for potential application as photodynamic therapy (PDT) agents in cancer therapy. PDT, a light-induced treatment, offers several advantages over conventional cancer treatments, such as minimal invasiveness and localized action. P18 N AI ME, a chlorine class photosensitizer model drug, was synthesized in an attempt to treat tumor in deeper tissues by interacting long-wavelength light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!