A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. | LitMetric

The measurement of blood-plasma velocity distributions with spatial and temporal resolution in vivo is inevitable for the determination of shear stress distributions in complex geometries at unsteady flow conditions like in the beating heart. A non-intrusive, whole-field velocity measurement technique is required that is capable of measuring instantaneous flow fields at sub-millimeter scales in highly unsteady flows. Micro particle image velocimetry (muPIV) meets these demands, but requires special consideration and methodologies in order to be utilized for in vivo studies in medical and biological research. We adapt muPIV to measure the blood-plasma velocity in the beating heart of a chicken embryo. In the current work, bio-inert, fluorescent liposomes with a nominal diameter of 400 nm are added to the flow as a tracer. Because of their small dimension and neutral buoyancy the liposomes closely follow the movement of the blood-plasma and allow the determination of the velocity gradient close to the wall. The measurements quantitatively resolve the velocity distribution in the developing ventricle and atrium of the embryo at nine different stages within the cardiac cycle. Up to 400 velocity vectors per measurement give detailed insight into the fluid dynamics of the primitive beating heart. A rapid peristaltic contraction accelerates the flow to peak velocities of 26 mm/s, with the velocity distribution showing a distinct asymmetrical profile in the highly curved section of the outflow tract. In relation to earlier published gene-expression experiments, the results underline the significance of fluid forces for embryonic cardiogenesis. In general, the measurements demonstrate that muPIV has the potential to develop into a general tool for instationary flow conditions in complex flow geometries encountered in cardiovascular research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2005.03.015DOI Listing

Publication Analysis

Top Keywords

beating heart
12
micro particle
8
particle image
8
image velocimetry
8
blood-plasma velocity
8
flow conditions
8
velocity distribution
8
velocity
7
flow
6
vivo micro
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!