Nanosized materials are increasingly used in medicine and biotechnology but originate also from various aerosol sources. A detailed understanding of their interaction with cells is a prerequisite for specific applications and appraisal of hazardous effects. Fluorescence fluctuation methods are applied to follow the time-course of the translocation and distribution of fluorescent 20 nm polystyrene nanoparticles with negative surface charges in HeLa cells under almost physiological conditions. The experimental results demonstrate that singular particles enter the cell without significant contribution by endocytotic mechanisms and are distributed within the cytoplasm. Subsequently aggregation is observed, which can be blocked by cytotoxins, like Genistein and Cytochalasin B, interfering with cellular uptake processes. The observed non-active uptake is due to non-specific interactions with the cell surface and could be responsible for distribution of nanometer-sized materials in tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.04.100 | DOI Listing |
Molecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFACS Sens
January 2025
Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.
The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina. Electronic address:
Technological innovation can drive scientific inquiry by allowing researchers to answer questions that were once out of reach. Eukaryotic mRNA synthesis was not so long ago thought of as a deterministic, sequential process in which transcriptional regulators and general transcription factors assemble in an orderly fashion into chromatin to, ultimately, activate RNA polymerase II. Advances in fluorescence microscopy techniques have revealed a much more complex scenario, wherein transcriptional regulators dynamically engage with chromatin in a more stochastic, probabilistic way.
View Article and Find Full Text PDFSuper-resolution optical fluctuation imaging (SOFI) rapidly generates super-resolution images by analyzing fluorescence intensity fluctuations. However, fluorophores for high-order SOFI applications are very rare. Here, we report ultrasmall semiconducting polymer dots (Pdots) to achieve high-order SOFI at single-particle and cellular levels.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Applied Bioscience, Kanazawa Institute of Technology, Japan. Electronic address:
A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!