The renal potassium channel ROMK is a crucial element of K+ recycling and secretion in the distal tubule and the collecting duct system. Mutations in the ROMK gene (KCNJ1) lead to hyperprostaglandin E syndrome/antenatal Bartter syndrome, a life-threatening hypokalemic disorder of the newborn. The localization of ROMK channel protein, however, remains unknown in humans. We generated an affinity-purified specific polyclonal anti-ROMK antibody raised against a C-terminal peptide of human ROMK. Immunoblotting revealed a 45 kDa protein band in both rat and human kidney tissue. In human kidney sections, the antibody showed intense staining of epithelial cells in the cortical and medullary thick ascending limb (TAL), the connecting tubule, and the collecting duct. Moreover, a strong expression of ROMK protein was detected in cells of the macula densa. In epithelial cells of the TAL expression of ROMK protein was mainly restricted to the apical membrane. In human fetal kidney expression of ROMK protein was detected mainly in distal tubules of mature nephrons but not or only marginally in the collecting system. No expression was found in early developmental stages such as comma or S shapes, indicating a differentiation-dependent expression of ROMK protein. In summary, these findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00418-004-0742-5 | DOI Listing |
Am J Physiol Renal Physiol
January 2025
Department of Pharmacology, New York Medical College, Valhalla, NY.
Kir5.1 encoded by is an inwardly-rectifying K channel-subunit and it possibly interacts with Kir4.2-subunit encoded by for assembling a Kir4.
View Article and Find Full Text PDFIntroduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).
View Article and Find Full Text PDFPhysiol Rep
October 2024
Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
K secretion in the distal nephron has a critical role in K homeostasis and is the primary route by which K is lost from the body. Renal K secretion is enhanced by increases in dietary K intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K secretion (FIKS).
View Article and Find Full Text PDFKidney Res Clin Pract
September 2024
Basic Medical Science College, Qiqihar Medical University, Qiqihar, China.
Background: This study investigates angiotensin II (Ang II)'s regulatory mechanism on renal outer medullary potassium channel (ROMK) activity in the distal convoluted tubule (DCT) during low potassium intake, focusing on the Janus kinase 2 (JAK2) pathway activation mediated by the Ang II type 1 receptor (AT1R).
Methods: Utilizing a low potassium diet mouse model, various methods including patch clamping, reverse transcription-quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining were applied to analyze ROMK channel activity and the expression of related proteins.
Results: The findings reveal that Ang II inhibits ROMK activity in the DCT2 membrane through AT1R activation, with the JAK2 pathway playing a central role.
Acta Physiol (Oxf)
August 2024
Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na and K transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!