Pigs exposed to GP(5) protein of PRRSV by means of DNA immunization develop specific neutralizing and protecting antibodies. Herein, we report on the consequences of codon bias, and on the favorable outcome of the systematic replacement of native codons of PRRSV ORF5 gene with codons chosen to reflect more closely the codon preference of highly expressed mammalian genes. Therefore, a synthetic PRRSV ORF5 gene (synORF5) was constructed in which 134 nucleotide substitutions were made in comparison to wild-type gene (wtORF5), such that 59% (119) of wild-type codons were replaced with known preferable codons in mammalian cells. In vitro expression in mammalian cells of synORF5 was considerably increased comparatively to wtORF5, following infection with tetracycline inducible replication-defective human adenoviral vectors (hAdVs). After challenge inoculation, SPF pigs vaccinated twice with recombinant hAdV/synORF5 developed earlier and higher antibody titers, including virus neutralizing antibodies to GP(5) than pigs vaccinated with hAdV/wtORF5. Data obtained from animal inoculation studies suggest direct correlation between expression levels of immunogenic structural viral proteins and immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2005.03.012DOI Listing

Publication Analysis

Top Keywords

orf5 gene
12
immune response
8
prrsv orf5
8
mammalian cells
8
pigs vaccinated
8
alternative codon
4
codon usage
4
usage prrs
4
prrs virus
4
virus orf5
4

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a significant swine disease with no effective vaccine due to high viral mutation rates. This study investigates a natural PRRS outbreak through molecular, pathological, and serological analyses. Nineteen affected pigs were clinically examined, and 10 underwent post-mortem examination.

View Article and Find Full Text PDF

Effect analysis of S5-interacting genes on rice hybrid sterility using nontransgenic gamete killer.

Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address:

While hybrids between japonica and indica rice exhibit strong heterosis, they often suffer from hybrid sterility (HS). Hybrid fertility of the embryo sac is predominantly regulated by a three-gene system (comprising closely linked ORF3, ORF4 and ORF5) at rice S5 locus. The cooperation of ORF5+ and ORF4+ can result in endoplasmic reticulum (ER) stress and sporophytically kill all embryo sacs, while ORF3+ can gametophytically protect the residing embryo sac.

View Article and Find Full Text PDF
Article Synopsis
  • PRRSV is a significant virus affecting the swine industry, and this study is the first to report NADC34-like strains found in Japan.
  • Serum samples from 18 piglets in Okinawa were analyzed, showing all samples matched a specific sublineage, identified as sublineage 1.5 of Lineage 1.
  • Although NADC34-like strains are known to cause severe outbreaks, the farm experienced only a temporary spike in piglet mortality, indicating a need for further research on these strains and the potential for new variants.
View Article and Find Full Text PDF

Molecular detection and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China.

Microb Pathog

December 2024

Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China. Electronic address:

Porcine reproductive and respiratory syndrome caused by porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically devastating viral diseases in the global pork industry. To further clarify the epidemic characteristics of the virus, 365 clinical samples were collected from diseased pigs suffering from abortion and respiratory disease from 2018 to 2023 on 63 pig farms in Henan and Shanxi provinces, and screened for the presence of PRRSV using reverse transcription-polymerase chain reaction (RT-PCR). A total of 62 clinical samples (62/365, 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!