The role of cysteine residues in the sulphate transporter, SHST1: construction of a functional cysteine-less transporter.

Biochim Biophys Acta

School of Biochemistry and Molecular Biology, The Faculties, Australian National University, Canberra, ACT 0200, Australia.

Published: May 2005

We investigated the role of cysteine residues in the sulphate transporter, SHST1, with the aim of generating a functional cysteine-less variant. SHST1 contains five cysteine residues and none was essential for function. However, replacement of C421 resulted in a reduction in transport activity. Sulphate transport by C205 mutants was dependent on the size of the residue at this position. Alanine at position 205 resulted in a complete loss of function whereas leucine resulted in a 3-fold increase in sulphate transport relative to wild type SHST1. C205 is located in a putative intracellular loop and our results suggest that this loop may be important for sulphate transport. By replacing C205 with leucine and the other four cysteine residues with alanine, we constructed a cysteine-less variant of SHST1 that has transport characteristics indistinguishable from wild type. This construct will be useful for further structure and function studies of SHST1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2005.01.002DOI Listing

Publication Analysis

Top Keywords

cysteine residues
16
sulphate transport
12
role cysteine
8
residues sulphate
8
sulphate transporter
8
transporter shst1
8
functional cysteine-less
8
cysteine-less variant
8
variant shst1
8
wild type
8

Similar Publications

Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS.

FEBS J

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.

1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure.

View Article and Find Full Text PDF

Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation.

Proc Natl Acad Sci U S A

February 2025

Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.

The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.

View Article and Find Full Text PDF

Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!