Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2005.04.038DOI Listing

Publication Analysis

Top Keywords

wobble modification
16
modification deficiency
12
mutant trnas
12
deficiency mutant
8
mitochondrial diseases
8
cybrid cells
8
wobble
5
trnas patients
4
patients mitochondrial
4
diseases point
4

Similar Publications

Environmental Control of Queuosine Levels in Streptococcus mutans tRNAs.

Mol Microbiol

December 2024

Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA.

Queuosine (Q) is a modification of the wobble base in tRNAs that decode NA(C/U) codons. It is ubiquitous in bacteria, including many pathogens. Streptococcus mutans is an early colonizer of dental plaque biofilm and a key player in dental caries.

View Article and Find Full Text PDF

Expanding the phenotypic and genetic spectrum of GTPBP3 deficiency: findings from nine Chinese pedigrees.

Orphanet J Rare Dis

December 2024

Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Background: GTPBP3 catalyzes τm(s) U biosynthesis at the 34th wobble position of mitochondrial tRNAs, the hypomodification of τmU leads to mitochondrial disease. While twenty-three variants of GTPBP3 have been reported worldwide, the genetic landscape in China remains uncertain.

Methods: By using whole-exome sequencing, the candidate individuals carrying GTPBP3 variants were screened and identified.

View Article and Find Full Text PDF

Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.

View Article and Find Full Text PDF

Post-transcriptional modifications at the anticodon stem-loop of tRNAs are key to the translation function. Metabolic pathways to these modifications often incorporate complex enzymology. A notable example is the hypermodified nucleoside, queuosine, found at the wobble position of Asn, Asp, His, and Tyr encoding tRNAs.

View Article and Find Full Text PDF

Queuosine tRNA Modification: Connecting the Microbiome to the Translatome.

Bioessays

November 2024

Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.

Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!