Stem cells derived from midguts of the caterpillar, Spodoptera littoralis, can be induced to multiply and differentiate in vitro. Ecdysone (E) and 20-hydroxyecdysone (20E) had a concentration-dependent effect: E was more active in cell proliferation and 20E in differentiation. Ecdysteroid receptors in midgut stem cell nuclei were stained with the antibody 9B9. In addition, alpha-arylphorin and four midgut differentiation factors (MDF) specifically stimulated proliferation and differentiation of stem cells, respectively. The activity of a panel of peptide growth factors and hormones on growth and metamorphosis of the insect midgut is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1327.094 | DOI Listing |
PLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFNat Commun
January 2025
The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390.
Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously showed that epithelium-derived BMP promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014).
View Article and Find Full Text PDFEcol Evol
November 2024
Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins Profonds Plouzane France.
At deep-sea hydrothermal vents, deprived of light, most living communities are fueled by chemosynthetic microorganisms. These can form symbiotic associations with metazoan hosts, which are then called holobionts. Among these, two endemic co-occurring shrimp of the Mid-Atlantic Ridge (MAR), and are colonized by dense and diversified chemosynthetic symbiotic communities in their cephalothoracic cavity and their digestive system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!