Fluid balance in ruminants: adaptation to external and internal challenges.

Ann N Y Acad Sci

Department of Anatomy and Physiology, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Published: April 2005

Ruminants are widespread in hot, arid regions. This demands adaptation to large circadian temperature fluctuations and recurrent periods of food and water shortage. Pregnancy and lactation add to the demands on the adaptive mechanisms due to the greater need for food, water, and electrolytes. The blood volume increases to meet the requirements of the fetoplacental unit and the mammary glands. Unlike urine, the milk cannot be concentrated by antidiuretic hormone (vasopressin). During water deprivation, lactating animals therefore become dehydrated more rapidly than nonlactating animals. Nevertheless, desert-adapted lactating ruminants endure frequent periods of water deprivation without incurring bad health. For the offspring living in hot and dry conditions, it is an advantage that the milk is not concentrated, even if the mother has a high antidiuretic hormone concentration to enable her to concentrate the urine. Since ruminants are prey, they need to drink rapidly when they get access to water. The forestomach allows the animals to store water in the reticulorumen. There is no danger of water intoxication even if they drink to satisfaction in a couple of minutes after having lost as much as 30% of their body weight.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1327.020DOI Listing

Publication Analysis

Top Keywords

food water
8
milk concentrated
8
antidiuretic hormone
8
water deprivation
8
water
7
fluid balance
4
ruminants
4
balance ruminants
4
ruminants adaptation
4
adaptation external
4

Similar Publications

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

The aim of this study is based on the searching of "new" potential environmentally friendly plant based products with herbicidal activity. The purpose of the study is also to find the source which is easy to harvest in high amount within the local environment. Salvia pratensis L.

View Article and Find Full Text PDF

Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems.

Nat Food

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.

Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.

View Article and Find Full Text PDF

Skillful seasonal climate prediction is critical for food and water security over the world's heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies.

View Article and Find Full Text PDF

Construction of magnetic response nanocellulose particles to realize smart antibacterial of pickering emulsion.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!