We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1110335DOI Listing

Publication Analysis

Top Keywords

quantum fourier
16
fourier transform
16
implementation semiclassical
8
semiclassical quantum
8
quantum
7
transform
5
fourier
4
transform scalable
4
scalable system
4
system report
4

Similar Publications

The first ground-state rotational spectrum of 3-methylstyrene (3MS) was measured by Fourier transform microwave spectroscopy under supersonic jet-cooled conditions. Transitions were assigned for two conformers: cis-3MS and trans-3MS. In the cis conformer, the vinyl group is oriented toward the methyl group, while in the trans conformer, it is positioned away from the methyl.

View Article and Find Full Text PDF

The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.

View Article and Find Full Text PDF

The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.

View Article and Find Full Text PDF

Optical clocks require an ultra-stable laser to probe and precisely measure the frequency of the narrow-linewidth clock transition. We introduce a portable ultraviolet (UV) laser system for use in an aluminum quantum logic clock, demonstrating a fractional frequency instability of approximately mod   = 2 × 10. The system is based on an ultra-stable cavity with crystalline AlGaAs/GaAs mirror coatings, with a frequency quadrupling system employing two single-pass second-harmonic generation (SHG) stages.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!