Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia.

J Physiol

Departamento de Bioquímica y Fisiología y Genética Molecular-IBGM, Universidad de Valladolid-CSIC, 47005 Valladolid, Spain.

Published: July 2005

The carotid body (CB) is an arterial chemoreceptor, bearing specialized type I cells that respond to hypoxia by closing specific K+ channels and releasing neurotransmitters to activate sensory axons. Despite having detailed information on the electrical and neurochemical changes triggered by hypoxia in CB, the knowledge of the molecular components involved in the signalling cascade of the hypoxic response is fragmentary. This study analyses the mouse CB transcriptional changes in response to low PO2 by hybridization to oligonucleotide microarrays. The transcripts were obtained from whole CBs after mice were exposed to either normoxia (21% O2), or physiological hypoxia (10% O2) for 24 h. The CB transcriptional profiles obtained under these environmental conditions were subtracted from the profile of control non-chemoreceptor adrenal medulla extracted from the same animals. Given the common developmental origin of these two organs, they share many properties but differ specifically in their response to O2. Our analysis revealed 751 probe sets regulated specifically in CB under hypoxia (388 up-regulated and 363 down-regulated). These results were corroborated by assessing the transcriptional changes of selected genes under physiological hypoxia with quantitative RT-PCR. Our microarray experiments revealed a number of CB-expressed genes (e.g. TH, ferritin and triosephosphate isomerase) that were known to change their expression under hypoxia. However, we also found novel genes that consistently changed their expression under physiological hypoxia. Among them, a group of ion channels show specific regulation in CB: the potassium channels Kir6.1 and Kcnn4 are up-regulated, while the modulatory subunit Kcnab1 is down-regulated by low PO2 levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464746PMC
http://dx.doi.org/10.1113/jphysiol.2005.088815DOI Listing

Publication Analysis

Top Keywords

physiological hypoxia
16
carotid body
8
adrenal medulla
8
hypoxia
8
transcriptional changes
8
low po2
8
comparative gene
4
gene expression
4
expression profile
4
profile mouse
4

Similar Publications

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.

View Article and Find Full Text PDF

Background: Hypoxia triggers stress, leading to significant alterations in gene expression patterns, which in turn affect fish's growth and development. Real-time quantitative PCR (RT-qPCR) is a pivotal technique for assessing changes in gene expression. However, its accuracy is highly contingent upon the stable expression of reference genes.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!