A variable residue in the pore of Kv1 channels is critical for the high affinity of blockers from sea anemones and scorpions.

J Biol Chem

Département d'Ingénierie et d'Etudes des Protéines, Commissariat à l'Energie Atomique Saclay, 91191 Gif sur Yvette cedex, France.

Published: July 2005

Animal toxins are associated with well defined selectivity profiles; however the molecular basis for this property is not understood. To address this issue we refined our previous three-dimensional models of the complex between the sea anemone toxin BgK and the S5-S6 region of Kv1.1 (Gilquin, B., Racape, J., Wrisch, A., Visan, V., Lecoq, A., Grissmer, S., Ménez, A., and Gasparini, S. (2002) J. Biol. Chem. 277, 37406-37413) using a docking procedure that scores and ranks the structures by comparing experimental and back-calculated values of coupling free energies DeltaDeltaGint obtained from double-mutant cycles. These models further highlight the interaction between residue 379 of Kv1.1 and the conserved dyad tyrosine residue of BgK. Because the nature of the residue at position 379 varies from one channel subtype to another, we explored how these natural mutations influence the sensitivity of Kv1 channel subtypes to BgK using binding and electrophysiology experiments. We demonstrated that mutations at this single position indeed suffice to abolish or enhance the sensitivity of Kv1 channels for BgK and other sea anemone and scorpion toxins. Altogether, our data suggest that the residue at position 379 of Kv1 channels controls the affinity of a number of blocking toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M413626200DOI Listing

Publication Analysis

Top Keywords

kv1 channels
12
sea anemone
8
residue position
8
position 379
8
sensitivity kv1
8
variable residue
4
residue pore
4
kv1
4
pore kv1
4
channels critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!