Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is a powerful vasodilator and possesses vasoprotective effects. Therefore, augmentation of eNOS expression and -activity by pharmacological means could provide protection against cardiovascular disease. However, this concept has been questioned recently, because in several disease models, eNOS upregulation was associated with a dysfunctional enzyme (referred to as eNOS uncoupling). In contrast, the present study demonstrates that an eNOS gene expression-enhancing compound with additional protein kinase C (PKC) inhibitory properties can upregulate eNOS while preserving its enzymatic function. Apolipoprotein E-knockout mice were treated for 7 days with midostaurin (4'-N-benzoyl staurosporine, compound CGP 41251, 50-125 mg/kg/day), a PKC inhibitor previously shown to increase eNOS expression and NO production in cultured human endothelial cells. Midostaurin treatment enhanced eNOS mRNA expression (RNase protection assay) in mouse aorta, kidney, and heart in a dose-dependent fashion. In the dorsal skinfold microcirculation, midostaurin produced an arteriolar vasorelaxation (intravital microscopy), which could be prevented by the NOS inhibitor L-NAME, indicating that the upregulated eNOS remained functional. In organ chamber experiments, the aorta from midostaurin-treated mice showed an enhanced NO-mediated relaxation in response to acetylcholine. Accordingly, serum levels of nitrite/nitrate (NO-Analyzer) were increased, and the production of reactive oxygen species in the aorta (L-012 chemiluminescence) was reduced by midostaurin. Thus, in mice in vivo, midostaurin treatment results in enhanced expression of eNOS with preserved enzyme function and enhanced production of bioactive NO. Given the beneficial effects of endothelial-derived NO, vasoprotective and anti-atherosclerotic effects are likely to ensue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2005.04.001DOI Listing

Publication Analysis

Top Keywords

enos
12
enos gene
8
enos expression
8
midostaurin treatment
8
treatment enhanced
8
midostaurin
6
expression
5
midostaurin upregulates
4
upregulates enos
4
gene expression
4

Similar Publications

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.

View Article and Find Full Text PDF

Background/objectives: Severe obesity (BMI > 40 kg/m) has a severe influence on vascular health and reproduction. This study looks at how bariatric surgery affects endothelial nitric oxide synthase (eNOS) expression and reproductive hormone regulation across different follicle-stimulating hormone receptor (FSHR) polymorphism groups in women with extreme obesity.

Methods: Twenty-nine women with extreme obesity had bariatric surgery.

View Article and Find Full Text PDF

Obesity reduces nitric oxide (NO) production due to endothelial nitric oxide synthase (eNOS) dysfunction, resulting in oxidative stress, mitochondrial dysfunction, and chronic inflammation. These factors have a negative impact on reproductive health, including oocyte quality, endometrial receptivity, and embryo implantation. When oxidative stress affects eNOS function, the nitrate-nitrite-nitric oxide (NO-NO-NO) pathway provides an alternate route for NO production.

View Article and Find Full Text PDF

Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

Chin Med

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!