Hydrogen sulfide (H(2)S) vasoactivity has been observed in isolated vessels from all vertebrate classes, and its effects, which include constriction, dilation, and multiphasic responses, are both species- and vessel-specific. H(2)S is synthesized by mammalian and fish vessels, and because plasma H(2)S titers are also vasoactive in vitro, it is likely that H(2)S is a tonic effector of cardiovascular homeostasis in many vertebrates. Mechanisms of H(2)S vasoactivity in nonmammalian vertebrates have been limited to the trout where the triphasic relaxation-contraction-relaxation includes endothelium-dependent and -independent components, ATP-dependent K(+) channels, and extracellular and intracellular Ca(2+), all independent of cyclic GMP production. The observation that at least some H(2)S constrictory activity has been observed in all vertebrates except sharks suggests that H(2)S may have been an ancestral pressor gasotransmitter. However, the ability of H(2)S to serve as either (or both) an endothelium-independent constrictor or dilator, which is relatively unique among vasoregulatory molecules, is a feature that seems to have been exploited, for unknown reasons, by nearly all vertebrates. Aquatic vertebrates appear particularly vulnerable to H(2)S because of their intrinsically low blood pressure and the potential for increased H(2)S exposure from the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2005.7.804 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
In a recent communication (A. Shivhare, B. Dehariya, S.
View Article and Find Full Text PDFPrevious studies have shown that perceptual performance can be modulated at specific frequencies phase-locked to self-paced motor actions, but findings have been inconsistent. To investigate this effect at the population level, we tested 50 participants who performed a self-paced button press followed by a threshold-level detection task, using both fixed- and random-effects analyses. Contrary to expectations, the aggregated data showed no significant action-related modulation.
View Article and Find Full Text PDFHydrogen sulfide (HS), the third endogenous gaseous molecule, plays a crucial role in biological signaling and metabolic processes. It has garnered significant attention from researchers in the field of biochemistry. The highly sensitive detection of HS is essential for elucidating its functions and has long been a key objective in biochemical sensing.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!