Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reactive oxygen species (ROS) and ROS signaling have been implicated in a variety of human pathophysiological conditions that involve aberrant cellular proliferation, particularly cancer. We hypothesize that intracellular redox state differentially affects cell-cycle progression in nonmalignant versus malignant cells. The thiol antioxidant, N-acetyl-L-cysteine (NAC), was used to alter intracellular redox state in nonmalignant human breast epithelial (MCF-10A) and breast cancer cells (MCF-7 and MDA-MB-231). Treatment of cells with NAC resulted in significant augmentation of intracellular small-molecular-weight thiols, glutathione and cysteine. In addition, NAC treatment decreased oxidation of a prooxidant-sensitive dye in MCF-10A cells, but not in MDA-MB-231 and MCF-7 cells. NAC-induced shifts in intracellular redox state toward a more reducing environment caused G(1) delays in MCF-10A cells without causing any significant changes in MCF-7 and MDA-MB-231 cell-cycle progression. NAC treatment of MCF-10A (but not MCF-7 and MDA-MB-231) was accompanied by a decrease in cyclin D1 and an increase in p27 protein levels, which correlated with increased retinoblastoma protein hypophosphorylation. These results show differential redox control of progression from G(1) to S in nonmalignant versus malignant cells and support the hypothesis that loss of a redox control of the cell cycle could contribute to aberrant proliferation seen in cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2005.7.711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!