Indianmeal moth, Plodia interpunctella (Hübner), is classified as a freeze-intolerant organism and one of the most cold-tolerant stored-product pests. The objective of this study was to determine the relationship between mortality at low temperatures after minimum exposure and the supercooling point (SCP) for laboratory-reared P. interpunctella at different stages of development. This relationship also was analyzed for field-collected, cold-acclimated fifth instars. Mean SCP of laboratory-reared larvae (i.e., feeding stage) was consistently above approximately -16 degrees C. Mean SCP of laboratory-reared pupae and adults (i.e., nonfeeding stages) and field-collected, cold-acclimated fifth instars was consistently below approximately -21 degrees CP seemed to be the boundary between survival and death for larvae. However, it seemed that a 1-min exposure was not sufficient to cause larval mortality at the SCP. Alternatively, for both pupae and adults, the SCP seemed not to play an important role in their survival at low temperatures, with significant mortality observed at temperatures higher than the mean SCP. Adults were the most susceptible to low temperatures with no survival occurring at -20 degrees C, > 3 degrees C above its mean SCP. Results of this investigation demonstrate that P. interpunctella has a different response to low temperatures depending on stage of development and cold acclimation. Classifying P. interpunctella only as a freeze-intolerant organism disregards the occurrence of prefreeze mortality in this species. Therefore, a reclassification of this species (e.g., chill tolerant or chill susceptible) based on the extent of prefreeze mortality and the temperature and time of exposure at which it occurs is suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/98.2.618 | DOI Listing |
Nat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFNat Med
January 2025
Environment & Health Modelling (EHM) Lab, Department of Public Health Environment & Society, London School of Hygiene & Tropical Medicine, London, UK.
Previous health impact assessments of temperature-related mortality in Europe indicated that the mortality burden attributable to cold is much larger than for heat. Questions remain as to whether climate change can result in a net decrease in temperature-related mortality. In this study, we estimated how climate change could affect future heat-related and cold-related mortality in 854 European urban areas, under several climate, demographic and adaptation scenarios.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFCryobiology
January 2025
ICAR-National Bureau of Plant Genetic Resources, New Delhi-110 012 INDIA.
Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!