Current HIV-1 antiretroviral (ARV) drug resistance knowledge is limited to HIV-1 subtype B (HIV-1B). We addressed whether unique genetic and phenotypic properties of HIV-1 subtype C (HIV-1C), southern Africa's most prevalent subtype, may foment earlier and/or distinct resistance mutations. Population-level HIV-1C genotypes were evaluated with respect to drug resistance prevalence before Botswana's public ARV treatment programme began. Viruses were genotyped from 11 representative districts of northern and southern Botswana, and consensus sequences from these 71 individuals and 51 previously reported sequences from HIV-positive blood donors were constructed. Phylogenetic analysis classified all 71 sequences but one, which exhibited pol gene mosaicism, as HIV-1C. The protease and reverse transcriptase coding region had no detectable known primary mutations associated with HIV-1B protease inhibitor (PI) drug resistance. Secondary mutations associated with PI drug resistance were found in all sequences. Several HIV-1C-specific polymorphic sites were found across the pol gene. Northern and southern Botswana viral sequences showed no significant differences from each other. Population genotyping shows that, without countrywide ARV treatment, HIV-1C-infected Batswana harbour virtually no primary mutations known to confer resistance to the three major HIV-1B ARV drug classes. Some secondary PI mutations and polymorphic sites in the protease enzyme necessitate continuous population monitoring, particularly after introduction of countrywide ARV treatment in Botswana. Although its PI resistance development rate and kinetics are not known, our data may suggest increased susceptibility and readiness of HIV-1C to develop resistance under drug pressure when the PI class of drugs is used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/095632020501600203 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.
The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFPLoS One
January 2025
Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.
This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.
View Article and Find Full Text PDFPLoS Biol
January 2025
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
Objective: To evaluate the effects of a combination of carnitines, L-arginine, L-cysteine and myo-inositol on metabolic and reproductive parameters in PCOS overweight/obese patients.
Methods: This was a retrospective study analyzing information of a group of PCOS ( = 25) overweight/obesity patients, not requiring hormonal treatment, selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Modena, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of a daily oral complementary treatment with L-carnitine (500 mg), acetyl-L-carnitine (250 mg), L-arginine (500 mg), L-cysteine (100 mg) and myo-inositol (1 gr).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!