A binding assay has been developed to measure the affinity of leukotriene synthesis inhibitors for 5-lipoxygenase-activating protein (FLAP), using human leukocyte membranes as the source of FLAP and a radioiodinated leukotriene synthesis inhibitor, 125I-L-691,831, as ligand. Linearity of specific binding of radiolabeled ligand was demonstrated with increasing protein and ligand concentrations. Saturation analysis of radioligand binding showed a Kd of 6 nM and a Bmax that, depending on the membrane preparation, varied between 8 and 53 pmol/mg of protein. An excellent correlation was shown between affinity for FLAP in the binding assay and inhibition of leukotriene synthesis in human polymorphonuclear leukocytes for compounds from two structurally distinct classes, namely indoles and quinolines. A large number of membrane-active compounds did not compete with 125I-L-691,831 binding to FLAP. In addition, direct 5-lipoxygenase inhibitors and a selection of eicosanoids were unable to compete for FLAP binding. This study validates a selective binding assay for leukotriene synthesis inhibitors whose protein target is FLAP.

Download full-text PDF

Source

Publication Analysis

Top Keywords

leukotriene synthesis
20
binding assay
16
5-lipoxygenase-activating protein
12
binding
8
correlation affinity
8
synthesis inhibitors
8
flap binding
8
protein
6
flap
6
leukotriene
5

Similar Publications

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Allergic rhinitis affects millions globally, causing significant discomfort and reducing the quality of life. This study investigates the metabolic alterations in murine mast cells (MC/9) under allergic rhinitis conditions induced by lipopolysaccharide (LPS) stimulation, employing UHPLC-QTOF-MS-based untargeted and targeted metabolomics. The analysis identified 44 significantly regulated metabolites, including histamine, leukotrienes, prostaglandins, thromboxanes, and ceramides.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is characterized by dysregulated T cell immunity and skin microbiome dysbiosis with predominance of Staphylococcus aureus, which is associated with exacerbating AD skin inflammation. Specific glycosylation patterns of S. aureus cell wall structures amplify skin inflammation through interaction with Langerhans cells (LCs).

View Article and Find Full Text PDF

The hepatotoxicity of microplastics (MPs) has garnered increasing attention, but their effects on elderly organisms remain inadequately characterized, particularly concerning hepatic stress response patterns in environmental conditions. In this study, a 10-day exposure period of elderly zebrafish to polystyrene microplastics (PS-MPs, 1 µm) was conducted, with exposure concentrations set at 5.6 × 10 µg/L, 5.

View Article and Find Full Text PDF

An inflammatory response is related to different inflammatory mediators generated by immune and endometrial cells. The links between lipopolysaccharide (LPS), cytokines, and leukotrienes (LTs) in endometrial stromal cells remain unclear. This study aimed to examine the influence of LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4 and IL-10 on 5-lipooxygenase (5-LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) mRNA and protein abundances, and LTB4 and cysteinyl (cys)-LTs release including LTC4, by the cultured pig endometrial stromal cells, as well as on cell viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!