We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA-rich clusters. Therefore, we have systematically searched the human genome databases for CA-repeat and CA-rich elements associated with alternative 5' splice sites (5'ss), followed by minigene transfection assays. Surprisingly, in several specific human genes that we tested, intronic CA RNA elements could function either as splicing enhancers or silencers, depending on their proximity to the alternative 5'ss. HnRNP L was detected specifically bound to these diverse CA elements. These data demonstrated that intronic CA sequences constitute novel and widespread regulatory elements of alternative splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142610PMC
http://dx.doi.org/10.1038/sj.emboj.7600677DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
ca-repeat ca-rich
8
ca-rich elements
8
elements
5
alternative
5
splicing
5
intronic
4
intronic ca-repeat
4
elements class
4
class regulators
4

Similar Publications

In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL), which constitutes of 10-15% of all pediatric ALL cases, is known for its complex pathology due to pervasive genetic and chromosomal abnormalities. Although most children are successfully cured, chromosomal rearrangements involving the KMT2A gene is considered a poor prognostic factor. In a cohort of 171 pediatric T-ALL samples we have studied differences in gene and splice variant patterns in KMT2A rearranged (KMT2A-r) T-ALL compared to KMT2A negative (KMT2A-wt) T-ALL samples.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!