A novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients.

J Cereb Blood Flow Metab

[1] 1Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada [2] 2Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Calgary, Alberta, Canada.

Published: September 2005

Perfusion-weighted imaging (PWI) measures can predict tissue outcome in acute ischemic stroke. Accuracy might be improved if differential tissue susceptibility to ischemia is considered. We present a novel voxel-by-voxel analysis to characterize cerebral blood flow (CBF) separately in gray (GM) and white matter (WM). Ten patients were scanned with inversion-recovery spin-echo EPI (IRSEPI), diffusion-weighted imaging (DWI), PWI<6 h from onset and fluid attenuated inversion-recovery (FLAIR) at 30 days. Image processing included coregistration to PWI, automatic segmentation of IRSEPI into GM, WM and CSF and semiautomatic segmentation of DWI/FLAIR to derive the acute and 30-day lesions. Five tissue compartments were defined: (1) 'Core' (abnormal acutely and at 30 days), (2) 'Growth' (or 'infarcted penumbra', abnormal only at 30 days), (3) 'Reversed' (abnormal acutely but normal at 30 days), (4) 'MTT-Delayed ' (tissue with delayed mean transit time but not part of the acute or 30-day lesion), and (5) 'Normal' brain. Cerebral blood flow in GM and WM of each compartment was obtained from quantitative maps. Gray matter and WM mean CBF in the growth region differed by 5.5 mL/100 g min (P=0.015). Mean CBF also differed significantly within normal and MTT-Delayed compartments. The difference in the reversed region approached statistical significance. In core, GM and WM CBF did not differ. The results suggest separate ischemic thresholds for GM and WM in stroke penumbra.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jcbfm.9600130DOI Listing

Publication Analysis

Top Keywords

gray white
8
white matter
8
cerebral blood
8
blood flow
8
acute ischemic
8
ischemic stroke
8
novel method
4
method derive
4
derive separate
4
separate gray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!