Background: Previous radiofrequency work has not rigidly controlled energy application to the articular cartilage, giving uncertain results published to date.
Hypothesis: At minimal settings, radiofrequency probes cause cell death in measurable areas when applied to human articular cartilage.
Study Design: Controlled laboratory study.
Methods: Simulating operating room conditions, 5 commercially available radiofrequency probes were attached to a customized jig to standardize a minimal contact pressure of each probe tip to 2.0 g. Keeping all variables the same, probes were placed on specific points of fresh grade II human cartilage with treatment times of 1 and 3 seconds at the manufacturer's recommended settings. Grade III cartilage was also tested with a treatment time of 3 seconds, and grade II cartilage was studied with the probe held 1 mm off the cartilage surface. Cartilage was blindly analyzed by confocal microscopy using a live/dead cell viability assay to determine the extent of cell death.
Results: Radiofrequency probes produced significant cellular death in the form of a half-circle into the cartilage to variable depths. For treatment times of 1 and 3 seconds, cell death measurements ranged from 404 to 539 mum and 1034 to 1283 mum, respectively. One probe failed to show any effect, with minimal evidence of cell death or cartilage smoothing. When probes were kept a 1.0-mm distance above the cartilage, no cell death or cartilage smoothing was noted. Radiofrequency treatment of grade III cartilage penetrated to the subchondral bone. There was no statistically significant difference between the damage caused by monopolar and bipolar probes when tested under these rigidly controlled conditions.
Conclusion: These results showed significant cellular death at these minimal conditions to the underlying chondrocytes with radiofrequency probes. Surgeons using this technology need to be aware of the power and dangerous potential these probes can have on articular cartilage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546504271965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!