Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s(-1) and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s(-1), indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00034.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!