In this paper we compare, from a mathematical point of view, two well-recognized single fiber action potential (SFAP) convolutional models: the Nandedkar-Stalberg (N-S) model and the Dimitrov-Dimitrova (D-D) model. Junction waves appear in N-S SFAPs due to the onset and extinction of the monopoles whereas in D-D SFAPs these waves appear only when the dipoles reach the fiber/tendon junctions. D-D junction waves model more accurately the out-of-the-main-spike waveforms that appear in experimental SFAPs. The origin of junction waves lies in the discontinuities of the impulse responses. There are two kinds of these waves caused by the two types of existing discontinuities (in the impulse response function and in its derivative). We model each kind of discontinuity with a different mathematical function. Using these functions, the N-S and D-D impulse responses can be split and, therefore, the junction waves can be separated from the spike component of the SFAP. The expansion of the impulse response helps us to understand the differences between the N-S and D-D junction waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2005.845045 | DOI Listing |
Neurotherapeutics
January 2025
Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.
Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P × receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.
View Article and Find Full Text PDFNat Commun
January 2025
The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
JACC Case Rep
November 2024
Division of Cardiology, Tokyo Women's Medical University, Tokyo, Japan.
Marked first-degree atrioventricular block with a PR interval ≥500 ms is rare, leading to unusual P-wave placement. In this case, the P waves immediately after the QRS waves complicated rhythm interpretation. Close attention to P-wave morphology and fused premature ventricular complexes can be important for a proper diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!