The postnatal development of the ganglionic (Purkinje) layer was studied in the mouse cerebellum from P0 to young adulthood with special emphasis to vermal lobules VI-VII (oculomotor vermis) in the mouse. In order to visualize Purkinje cells (PCs), toluidine blue staining of resin-embedded semithin sections and calbindin immunohistochemistry were utilized. The number of PCs in the whole cerebellum was 199,080+/-2966 at postnatal day eight (P8), 222,000+/-2979 at P20 and nearly the same, 225,800+/-7549 in young adults; i.e., there was an approximately 13.4% increase of PCs between P8 and adults. The number of PC somata aligned into a rostrocaudal stripe along the developing ganglionic layer increased by about 24% in vermal cerebellar lobule III but much more markedly (i.e., by 49%) in VI+VII between P6 and young adulthood. Between P6 and P16, the increase of the number of PCs in the ganglionic layer of lobules VI and VII resulted in the (delayed) completion of PC layer, caused by the (late) alignment of rostrocaudally dispersed PCs, although late postnatal migration of a smaller population of these cells cannot be excluded either. It is concluded that the oculomotor vermis belongs to the latest developing cerebellar cortical structures, which could be the reason for its frequent involvement in developmentally related disturbances and disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-005-0458-x | DOI Listing |
Mol Brain
January 2025
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Kruppel-like factor 15 (KLF15), a member of the KLF family, is closely involved in many biological processes. However, the mechanism by which KLF15 regulates neural development is still unclear. Considering the complexity and importance of neural network development, in this study, we investigated the potent regulatory role of KLF15 in neural network development.
View Article and Find Full Text PDFWe use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea.
Alexander's law states that spontaneous nystagmus increases when looking in the direction of fast-phase and decreases during gaze in slow-phase direction. Disobedience to Alexander's law is occasionally observed in central nystagmus, but the underlying neural circuit mechanisms are poorly understood. In a retrospective analysis of 2,652 patients with posterior circulations stroke, we found a violation of Alexander's law in one or both directions of lateral gaze in 17 patients with lesions of unilateral lateral medulla affecting the vestibular nucleus.
View Article and Find Full Text PDF<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.
View Article and Find Full Text PDFThe role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!