Three-dimensional finite element (FE) analyses were performed to characterize the local mechanical environment created within the tissue regenerate during mandibular distraction osteogenesis (DO) in a rat model. Finite element models were created from three-dimensional computed tomography image data of rat hemi-mandibles at four different time points during an optimal distraction osteogenesis protocol (i.e., most successful protocol for bone formation): end latency (post-operative day (POD) 5), distraction day 2 (POD 7), distraction day 5 (POD 10), and distraction day 8 (POD 13). A 0.25 mm distraction was simulated and the resulting hydrostatic stresses and maximum principal tensile strains were determined within the tissue regenerate. When compared to previous histological findings, finite element analyses showed that tensile strains up to 13% corresponded to regions of new bone formation and regions of periosteal hydrostatic pressure with magnitudes less than 17 kPa corresponded to locations of cartilage formation. Tensile strains within the center of the gap were much higher, leading us to conclude that tissue damage would occur there if the tissue was not compliant enough to withstand such high strains, and that this damage would trigger formation of new mesenchymal tissue. These data were consistent with histological evidence showing mesenchymal tissue present in the center of the gap throughout distraction. Finite element analyses performed at different time points during distraction were instrumental in determining the changes in hydrostatic stress and tensile strain fields throughout distraction, providing a mechanical environment rationale for the different levels of bone formation in end latency, and distraction day 2, 5, and 8 specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.orthres.2004.09.010DOI Listing

Publication Analysis

Top Keywords

finite element
20
element analyses
16
day pod
16
distraction day
16
distraction osteogenesis
12
bone formation
12
pod distraction
12
tensile strains
12
distraction
11
mandibular distraction
8

Similar Publications

Structural design and safety performance of a novel high-strength steel lightweight guardrail.

PLoS One

January 2025

Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.

Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

Background/aims: Preformed zirconia crowns have emerged as the preferred choice for restoring damaged primary incisors. However, they differ from natural teeth in their biophysical properties and can potentially alter the overall response of crowned teeth to a traumatic load. This in silico study aimed to compare the response of three different traumatic loading conditions for the (i) natural (M1) and (ii) zirconia-restored tooth models (M2) models.

View Article and Find Full Text PDF

Is cranial anatomy indicative of fossoriality? A case study of the mammaliaform Hadrocodium wui.

Anat Rec (Hoboken)

January 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.

Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.

View Article and Find Full Text PDF

Computational simulation of cranial soft tissue expansion on the cranium during early postnatal growth in humans.

J Anat

January 2025

Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK.

The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!