Solution structure and backbone dynamics of the XPC-binding domain of the human DNA repair protein hHR23B.

FEBS J

Department of Chemistry, and National Creative Research Initiative Center for the Repair System of Damaged DNA, Korea Advanced Institute of Science and Technology, South Korea.

Published: May 2005

Human cells contain two homologs of the yeast RAD23 protein, hHR23A and hHR23B, which participate in the DNA repair process. hHR23B houses a domain (residues 277-332, called XPCB) that binds specifically and directly to the xeroderma pigmentosum group C protein (XPC) to initiate nucleotide excision repair (NER). This domain shares sequence homology with a heat shock chaperonin-binding motif that is also found in the stress-inducible yeast phosphoprotein STI1. We determined the solution structure of a protein fragment containing amino acids 275-342 of hHR23B (termed XPCB-hHR23B) and compared it with the previously reported solution structures of the corresponding domain of hHR23A. The periodic positioning of proline residues in XPCB-hHR23B produced kinked alpha helices and assisted in the formation of a compact domain. Although the overall structure of the XPCB domain was similar in both XPCB-hHR23B and XPCB-hHR23A, the N-terminal part (residues 275-283) of XPCB-hHR23B was more flexible than the corresponding part of hHR23A. We tried to infer the characteristics of this flexibility through (15)N-relaxation studies. The hydrophobic surface of XPCB-hHR23B, which results from the diverse distribution of N-terminal region, might give rise to the functional pleiotropy observed in vivo for hHR23B, but not for hHR23A.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2005.04667.xDOI Listing

Publication Analysis

Top Keywords

solution structure
8
dna repair
8
domain
6
hhr23b
5
xpcb-hhr23b
5
structure backbone
4
backbone dynamics
4
dynamics xpc-binding
4
xpc-binding domain
4
domain human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!