Thin-layer chromatography with a flame ionization detector (TLC-FID) was used for monitoring the production of structured phospholipids (ML type: L, long-chain fatty acids; M, medium-chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid. It was found that the structured PC fractionated into two to three distinct bands on both plate thin-layer chromatography (TLC) and Chromarod TLC. These three bands represented PC of the LL type, ML type, and MM type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage, reaction temperature, solvent amount, reaction time, and substrate ratio (caprylic acid/PC, mol/mol) on formation of ML-type PC in a batch reactor with Thermomyces lanuginosa lipase as the catalyst. The formation of ML-type PC was dependent on all parameters examined except for the substrate ratio. The ML-type PC content increased with increasing enzyme dosage, reaction temperature, solvent amount, and reaction time. The substrate ratio had no significant effect on the formation of ML-type PC within the tested range (3-15 mol/mol). The formation of MM-type PC was observed in some experiments, indicating that acyl migration is taking place during reaction since the lipase is claimed to be 1,3-specific. The TLC-FID method offers a simple and cheap technique for elucidation of product and byproduct formation during enzyme-catalyzed reactions for production of phospholipids containing mixtures of long- and medium-chain fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0480389DOI Listing

Publication Analysis

Top Keywords

thin-layer chromatography
12
fatty acids
12
substrate ratio
12
formation ml-type
12
acidolysis soybean
8
soybean phosphatidylcholine
8
phosphatidylcholine caprylic
8
caprylic acid
8
chromatography flame
8
flame ionization
8

Similar Publications

High-Performance Thin Layer Chromatography (HPTLC) is widely utilized in natural products research due to its simplicity, low cost, and short total analysis time, including data treatment. While bioautography can be used for rapid detection of bioactive compounds in extracts, the number of available bioautographic methods is limited mainly due to the high cost and difficulty in developing protocols that lead to accurate and reproducible results. For this reason, an alternative method for the detection of bioactive compounds in plant extracts prior to their isolation using HPTLC, combined with multivariate chemometrics, was previously explored by our lab.

View Article and Find Full Text PDF

Inflammation is a natural body's defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the methanolic extract (EMME), as well as its isolated fractions (FA-FJ) and compounds (-), were evaluated by using in vitro and cellular models.

View Article and Find Full Text PDF

Impact of Thermal, High-Pressure, and Pulsed Electric Field Treatments on the Stability and Antioxidant Activity of Phenolic-Rich Apple Pomace Extracts.

Molecules

December 2024

Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods.

View Article and Find Full Text PDF

Flash column chromatographic fractionation of tree of heaven () stem and trunk bark extracts, guided by thin-layer chromatography (TLC)- assay and TLC-heated electrospray high-resolution tandem mass spectrometry (HESI-HRMS/MS), lead to the isolation of six known compounds: (9,11)-13-hydroxy-9,11-octadecadienoic acid (13-HODE, ), (10,12)-9-hydroxy-10,12-octadecadienoic acid (9-HODE, ), hexadecanedioic acid (thapsic acid, ), 16-hydroxyhexadecanoic acid (juniperic acid, ), 16-feruloyloxypalmitic acid (alpinagalanate, ), and canthin-6-one (). Their structures were elucidated by HESI-HRMS/MS and one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. This is the first study identifying - in tree.

View Article and Find Full Text PDF

(1) Background: Most rare disease patients endure long delays in obtaining a correct diagnosis, the so-called "diagnostic odyssey", due to a combination of the rarity of their disorder and the lack of awareness of rare diseases among both primary care professionals and specialists. Next-generation sequencing (NGS) techniques that target genes underlying diverse phenotypic traits or groups of diseases are helping reduce these delays; (2) Methods: We used a combination of biochemical (thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry), NGS (resequencing gene panels) and splicing assays to achieve a complete diagnosis of three patients with suspected metachromatic leukodystrophy, a neurologic lysosomal disorder; (3) Results: Affected individuals in each family were homozygotes for harmful variants in the gene, one of them novel (c.854+1dup, in family 1) and the other already described (c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!