A series of alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamates and S-alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamothioates with unsubstituted or monobrominated straight chain alkyl groups were synthesized and evaluated as fungistatic agents against Gibberella zeae and Alternaria kikuchiana. These compounds showed variable antifungal activities at concentrations of 5 and 50 microg/mL. The results showed that antifungal activities depended on the length of the alkyl chain with the optimal chain length of 6-11 carbons. Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, hexyl ester (4) showed a strong fungistatic activity against A. kikuchiana at both concentrations, with 90.7 and 54% growth inhibition at 50 and 5 microg/mL, respectively. Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, heptyl ester (5); Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, octyl ester (6); and Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, undecyl ester (9) showed strong fungistatic activity against G. zeae at both concentrations. Their growth inhibitions against G. zeae at the concentration of 5 microg/mL were 78, 63, and 59%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0501746 | DOI Listing |
ACS Omega
December 2024
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo CEP 12228-900, Brazil.
The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.
View Article and Find Full Text PDFJACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China. Electronic address:
Carbendazim application in agroecosystems has posed potential threats to ecosystems and human health. The utilization of biochar-based materials for immobilizing microorganisms offers a sustainable strategy for effective bioremediation. In this study, a novel highly efficient carbendazim-degrading bacterium Pseudomonas hibiscus CN-1 was isolated and immobilized using corn straw-based biochar as a carrier.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
Cells
November 2024
School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel.
Early life stress (ELS) increases predisposition to major depressive disorder (MDD), with neuroinflammation playing a crucial role. This study investigated the long-term effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on ELS-induced depressive-like behavior and messenger RNA (mRNA) of pro-inflammatory cytokines in the medial prefrontal cortex (mPFC) and CA1 regions. We also assessed whether these gene expression alterations were present at the onset of URB597 treatment during late adolescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!