Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BMT.2005.016DOI Listing

Publication Analysis

Top Keywords

sheep cervical
20
interbody fusion
16
cervical spine
16
fusion cage
12
porous tio2/glass
12
spine segments
12
axial rotation
12
lateral flexion
12
segments
9
stand-alone interbody
8

Similar Publications

Normative Values of Brainstem Auditory-Evoked Responses in Sheep.

Brain Sci

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.

The brainstem auditory-evoked response (BAER) is an established electrophysiological measure of neural activity from the auditory nerve up to the brain stem. The BAER is used to diagnose abnormalities in auditory pathways and in neurophysiological human and animal research. However, normative data for BAERs in sheep, which represent an adequate large animal model for translational and basic otological research, are lacking.

View Article and Find Full Text PDF

In vitro study of carbetocin, an oxytocin receptor agonist, and 4-phenylfuroxan-3-carbonitrile, a NO-releasing agent, as cervical dilatators in sheep.

Theriogenology

January 2025

Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay; Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay. Electronic address:

The aim was to study the effect of 4-phenylfuroxan-3-carbonitrile (Fx), a NO-releasing agent, and carbetocin, an oxytocin receptor agonist, on matrix metalloproteinases-2 (MMP-2) activity and PGE2 production in cervix from cycling sheep. Cervical explants were incubated during 12 h with MEM supplemented with increasing concentrations of Fx in DMSO (2 %) (0 to 300 μg/mL) with Cb (100 ng/mL) (Experiment 1, n = 15) and DMSO (2 %), DMSO + Cb (100 ng/mL) or DMSO + Fx (30 μg/mL) (Experiment 2, n = 10), and their respective controls. In the supernatants, activated (A) and latent (L) MMP-2 activities were determined by a SDS-PAGE zymography, PGE2 concentration by immunoassay and NO production indirectly as nitrites by spectrophotometry.

View Article and Find Full Text PDF

Increasing matrix metalloproteinase-2 activity by treatment of ovine cervical explants with a long-acting analogue of oxytocin (Carbetocin) at the expected time of artificial insemination.

Vet Res Commun

January 2025

Biochemistry, Veterinary Biosciences Department, Veterinary Faculty, Universidad de la República, Ruta 8, Km 18 y Ruta 102, Montevideo, 13000, Uruguay.

The aim was to study the effect of long-acting analogue of oxytocin (Carbetocin) on cervical collagenolysis of MAP-eCG synchronized ewes. At the expected time of artificial insemination, five ewes were slaughtered (n = 5) and their cervical explants (100-200 mg) were incubated during 12 h with MEM supplemented with 0, 8, 16, 32 and 64 ng/mL of Cb. Activities of activated and latent forms of matrix metalloproteinases-2 and - 9 (MMP-2 and MMP-9, respectively) in the supernatant were determined by a SDS-PAGE zymography and prostaglandin E2 concentration by immunoassay.

View Article and Find Full Text PDF

Traumatic osteonecrosis of the femoral head (TONFH) refers to ischemic osteonecrosis is resulting from an acute mechanical interruption of the blood supply to the femoral head. The early diagnosis and optimal treatment have been central focuses of research and continue to undergo improvement. Reliable animal models are essential for advancing research into the treatment of the disease.

View Article and Find Full Text PDF

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!