Since the late 1980s, several studies have shown that human populations in the Amazon basin are exposed to high mercury levels in their fish diet. Gold mining, which releases the metal during the amalgamation process and erodes soils naturally rich in mercury, is regarded as the main contamination source. Here, we present the results of a comparative study of mercury distribution in the water and fish of two adjacent rivers in French Guiana, with and without gold mining activities. As a consequence of a marked difference in suspended particulate matter between the two systems, total mercury concentrations in unfiltered water samples were higher in the mined river (25.4-34.9 ng L(-1)) as compared to the reference one (2.1-5.4 ng L(-1)). Surprisingly, no significant differences were observed in mercury concentrations between 13 common fish species at upstream sites. In sharp contrast, mercury concentration of fish caught downstream a hydroelectric reservoir, where the two rivers flow, was up to 8-fold higher than that upstream. Mercury speciation measurements allowed one to relate these differences in fish to the water distribution of monomethylmercury, the mercury chemical species that biomagnifies along aquatic foodwebs. Indeed, mean dissolved monomethylmercury concentrations were low and similar in both rivers (0.03-0.06 ng L(-1)), while they were 10 times higher (up to 0.56 ng L(-1)) in the water outflowing the hydroelectric dam. Dissolved monomethylmercury determinations along a water column profile suggest that methylation of inorganic mercury occurs in the deep anoxic part in reservoir. We conclude that mercury mobilization related to gold mining is not solely sufficient to account for high concentrations in fish and that environmental conditions that favor mercury methylation, such as anoxia, are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049149rDOI Listing

Publication Analysis

Top Keywords

gold mining
16
mercury
12
mercury concentrations
8
dissolved monomethylmercury
8
fish
7
water
5
synergic gold
4
mining
4
mining damming
4
damming mercury
4

Similar Publications

Ozone/Thiosulfate-Assisted Leaching of Cu and Au from Old Flotation Tailings.

Molecules

December 2024

Department of Environment and Sustainable Development, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia.

The growing demand for metal production promotes the search for alternative sources and novel modalities in metallurgy. Flotation tailings are an important secondary mineral resource; however, they might pose a potential environmental threat due to containing toxic metals. Therefore, proper leaching reagent selection is required.

View Article and Find Full Text PDF

Burden of Infectious Diseases in Mobile Migrants in Gold Mining Areas in Suriname's Interior.

Cureus

December 2024

Internal Medicine, Foundation for the Advancement of Scientific Research in Suriname, Paramaribo, Suriname.

Introduction: Mobile migrants are subject to restricted healthcare access, which may result in the spread of certain infectious diseases. The aim of this study is to evaluate the burden of a subset of priority infectious diseases in mobile migrants in remote gold mining areas in the forested interior of Suriname.

Methods: This cross-sectional study enrolled mobile migrants in 13 study sites between January and June 2022.

View Article and Find Full Text PDF

Creep model of bond-degradation in deep granite based on variable radius particle clump.

Sci Rep

January 2025

Xincheng Gold Mine of Shandong Gold Mining Co., Ltd., Laizhou, 261400, Shandong, China.

The creep failure of rocks is related to its microstructure, external loading and time. A nonlinear yield model was introduced to describe the variation in the cohesion and friction angle with plastic strain and intergranular stress. The mechanical properties and creep characteristics of deep granite were obtained by indoor tests, and a variable radius particle clump model was constructed based on the particle flow method.

View Article and Find Full Text PDF

Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential.

Microorganisms

December 2024

Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta 470006, Magdalena, Colombia.

Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II).

View Article and Find Full Text PDF
Article Synopsis
  • Galamsey, a Ghanaian term meaning "gather and sell," refers to informal gold mining that, while economically beneficial, poses serious environmental threats, especially to aquatic ecosystems.
  • The paper utilizes the Driver-Pressure-State-Impact-Response framework to analyze how pollutants from galamsey affect water quality and ecosystem services, revealing significant deviations from safe levels of mercury, arsenic, and turbidity in surface water.
  • Key findings indicate substantial negative impacts on ecosystem services like drinking water, recreation, and aquaculture, with varying levels of severity, prompting calls for cleaner, more responsible mining practices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!