Type I interferons (IFN) play a critical role in the Toll-like receptor (TLR)-mediated expression of B7 costimulatory family members. For example, LPS-induced up-regulation of CD80 (B7.1) and CD86 (B7.2) is abrogated in antigen-presenting cells (APC) deficient in TRIF or TRAM, two adaptors that are responsible for TLR4-mediated production of Type I IFN. In this report, we demonstrate that LPS-induced up-regulation of B7-related protein 1 (B7RP-1), a ligand for ICOS, is dependent primarily upon the MyD88-dependent signaling pathway. Signaling via the TRIF pathway sharply limits MyD88-dependent B7RP-1 up-regulation. Hence, LPS induces significantly higher B7RP-1 expression on TRIF- or TRAM-deficient mouse peritoneal macrophages and on TRIF-deficient mouse splenic B cells as compared to wild-type cells. Further studies reveal that Type I IFN are general suppressors of TLR-mediated up-regulation of B7RP-1. These data indicate that Type I IFN play a dual role in the TLR-mediated expression of B7 costimulatory family members and suggest that they may act to limit B7RP-1 expression and thus limit signals derived from B7RP-1-ICOS interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200525971DOI Listing

Publication Analysis

Top Keywords

type ifn
12
b7rp-1 up-regulation
8
ifn play
8
tlr-mediated expression
8
expression costimulatory
8
costimulatory family
8
family members
8
lps-induced up-regulation
8
b7rp-1 expression
8
b7rp-1
6

Similar Publications

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H.

View Article and Find Full Text PDF

Type 1 Diabetes (T1D) is an autoimmune disease mediated by autoreactive T cells. Our studies indicate that CD4 T cells reactive to Hybrid Insulin Peptides (HIPs) play a critical role in T cell-mediated beta-cell destruction. We have shown that HIPs form in human islets between fragments of the C-peptide and cleavage products of secretory granule proteins.

View Article and Find Full Text PDF

pDCs, type 1 IFN, and the female predileXion of SSc.

J Exp Med

March 2025

Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Systemic sclerosis (SSc) is a debilitating autoimmune disease that preferentially afflicts women. The molecular origins of this female bias are unclear. A new study of plasmacytoid dendritic cells from SSc patients by Du et al.

View Article and Find Full Text PDF

is an obligate intracellular, tick-borne bacterial pathogen that can cause eschar-associated rickettsiosis in humans. invades host cells, escapes from vacuoles into the cytosol, and undergoes two independent modes of actin-based motility mediated by effectors RickA or Sca2. Actin-based motility of enables bacteria to enter protrusions of the host cell plasma membrane that are engulfed by neighboring host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!