Hippocampal nitric oxide synthase and arginase and age-associated behavioral deficits.

Hippocampus

Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.

Published: September 2005

The present study investigated age-related changes in nitric oxide synthase (NOS) and arginase in the subregions of the hippocampus and their correlations with animals' performance in the open field, T-maze, and water maze tasks. Aged rats (24 months old) showed reduced exploratory activity and poorer spatial learning relative to the young adults (4 months old). Significant increases in total NOS activity were found in the aged dentate gyrus and a dramatic decrease in endothelial NOS expression was observed in the aged CA2/3. Activity or protein expression of inducible NOS was not detected in any subregion of the hippocampus. There were no age-related changes in total arginase activity or arginase I and arginase II protein expression. Correlation analysis revealed that animals' motor ability was associated with CA1 NOS and arginase, as well as hippocampal function. The present findings provide further support for the involvement of NOS/NO and arginase in the normal aging process. A strong positive correlation between CA1 eNOS protein expression and swimming speed in the water maze task may reflect a relationship between the local cerebral blood flow and neuronal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.20085DOI Listing

Publication Analysis

Top Keywords

protein expression
12
nitric oxide
8
oxide synthase
8
synthase arginase
8
age-related changes
8
water maze
8
arginase
7
activity
5
hippocampal nitric
4
arginase age-associated
4

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!