Hibernating animals are very tolerant of trauma to the central nervous system such that dramatic fluctuations in cerebral blood flow occur during hibernation and arousal without apparent damage. Indeed, it was demonstrated that Arctic ground squirrels (AGS) experience acute and severe systemic hypoxia along with the dramatic fluctuation in cerebral blood flow when the animals are aroused from hibernation. While initial hypotheses concerned protective mechanisms in the hibernating state, recent evidence of sustained elevation of HIF1alpha in euthermic AGS from our laboratory suggests that a preparatory program of protective gene expression is chronically expressed in euthermic AGS. In this study we evaluated potential neuroprotective adaptations by examining the alteration of intracellular MAPK pathways that may be modulated by hypoperfusion/reperfusion in AGS during hibernation and arousal. We found that ERK and JNK are activated in both euthermic and aroused AGS compared to the hibernating group which positively correlated with HIF1alpha levels. The activation of ERK and JNK associated with HIF1alpha may play an important role in mediating neuroprotective adaptations that is essential for successful hibernation. Interestingly, p38 is activated in euthermic AGS but not in aroused AGS, which shows strong correlation with iNOS induction. Therefore, the attenuation of p38 activation and iNOS induction in hibernating and aroused animals may contribute to the attenuation of inflammation that plays important neuroprotective roles during hibernation. Taken together, the differential modulation of the MAPK pathways may be critical for neuroprotection of AGS necessary for fluctuations in oxygen and nutrient delivery during hibernation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20526DOI Listing

Publication Analysis

Top Keywords

euthermic ags
12
arctic ground
8
ground squirrels
8
cerebral blood
8
blood flow
8
hibernation arousal
8
ags
8
neuroprotective adaptations
8
mapk pathways
8
erk jnk
8

Similar Publications

Cerebral ischemia/reperfusion (I/R) triggers a cascade of uncontrolled cellular processes that perturb cell homeostasis. The arctic ground squirrel (AGS), a seasonal hibernator resists brain damage following cerebral I/R caused by cardiac arrest and resuscitation. However, it remains unclear if tolerance to I/R injury in AGS depends on the hibernation season.

View Article and Find Full Text PDF

Resistance to systemic inflammation and multi organ damage after global ischemia/reperfusion in the arctic ground squirrel.

PLoS One

December 2014

Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America.

Introduction: Cardiac arrest (CA) and hemorrhagic shock (HS) are two clinically relevant situations where the body undergoes global ischemia as blood pressure drops below the threshold necessary for adequate organ perfusion. Resistance to ischemia/reperfusion (I/R) injury is a characteristic of hibernating mammals. The present study sought to determine if arctic ground squirrels (AGS) are protected from systemic inflammation and multi organ damage after CA- or HS-induced global I/R and if, for HS, this protection is dependent upon their hibernation season.

View Article and Find Full Text PDF

A₁ adenosine receptor (A₁AR) activation within the central nervous system induces torpor, but in obligate hibernators such as the arctic ground squirrel (AGS; Urocitellus parryii), A₁AR stimulation induces torpor only during the hibernation season, suggesting a seasonal increase in sensitivity to A₁AR signaling. The purpose of this research was to investigate the relationship between body temperature (Tb) and sensitivity to an adenosine A1 receptor agonist in AGS. We tested the hypothesis that increased sensitivity in A₁AR signaling would lead to lower Tb in euthermic animals during the hibernation season when compared with the summer season.

View Article and Find Full Text PDF

Adaptive response of brain tissue oxygenation to environmental hypoxia in non-sedated, non-anesthetized arctic ground squirrels.

Comp Biochem Physiol A Mol Integr Physiol

November 2009

Alaska Basic Neuroscience Program, Institute of Arctic Biology, Box 757000, 902 N Koyukuk Dr, Irving I, Rm 402, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.

The present study examined the physiological mechanisms of the responses of brain tissue oxygen partial pressure (P(t)O(2)), brain temperature (T(brain)), global oxygen consumption (V(O2)), and respiratory frequency (f(R)) to hypoxia in non-sedated and non-anesthetized arctic ground squirrels (Spermophilus parryii, AGS) and rats. We found that (1) in contrast to oxygen partial pressure in blood (P(a)O(2)), the baseline value of P(t)O(2) in summer euthermic AGS is significantly higher than in rats; (2) both P(t)O(2) and P(a)O(2) are dramatically reduced by inspired 8% O(2) in AGS and rats, but AGS have a greater capacity in P(t)O(2) to cope with environmental hypoxia; (3) metabolic rate before, during, and after hypoxic exposure is consistently lower in AGS than in rats; (4) the respiratory responding patterns to hypoxia in the two species differ in that f(R) decreases in AGS but increases in rats. These results suggest that (1) AGS have special mechanisms to maintain higher P(t)O(2) and lower P(a)O(2,) and these levels in AGS represent a typical pattern of adaptation of heterothermic species to and a brain protection from hypoxia; (2) AGS brain responds to hypoxia through greater decreases in P(t)O(2) and decreased f(R) and ventilation.

View Article and Find Full Text PDF

Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel.

J Neurochem

August 2009

Department of Neurology, Cerebral Vascular Disease Research Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.

During the pre-hibernation season, arctic ground squirrels (AGS) can tolerate 8 min of asphyxial cardiac arrest (CA) without detectable brain pathology. Better understanding of the mechanisms regulating innate ischemia tolerance in AGS has the potential to facilitate the development of novel prophylactic agents to induce ischemic tolerance in patients at risk of stroke or CA. We hypothesized that neuroprotection in AGS involves robust maintenance of ion homeostasis similar to anoxia-tolerant turtles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!