Ab initio molecular orbital calculations have been used to study the effects of the molecular environment on the oxidation of thiolate and selenolate by hydrogen peroxide. The reaction was first examined in vacuo at the QCISD(T)/6-311+G(2df,2pd)//MP2/6-311+G(d,p) level of theory. It was found for both thiolate and selenolate that a reactant aggregate is formed, which has a dissociation rate constant comparable to the activation rate constant (about 10(-3) s(-1) for thiolate and 10(-1) s(-1) for selenolate). Using the polarizable continuum model (PCM) it was then found that the dissociation barrier energy decreases dramatically in water giving a dissociation rate constant of the order of 10(9) s(-1). In this case, the predicted overall rate constant of the thiolate reaction was about 10.2 mol(-1) dm3 s(-1), which is in good agreement with the experimental rate constant of cysteine oxidation in aqueous solution. The calculated rate constant for the selenolate reaction was somewhat higher (about 35.4 mol(-1) dm3 s(-1)). However, this value is several orders of magnitude smaller than the experimental value reported for the oxidation of selenocysteine in glutathione peroxidase. By considering the effect of the PCM dielectric constant on the reaction rate constant it was concluded that the high reactivity of the selenocysteine in glutathione peroxidase, as compared with cysteine, could be mainly due to the molecular environment of the selenocysteine residue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200400568 | DOI Listing |
J Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P.R. China.
Milestoning is an efficient method for calculating rare event kinetics by constructing a continuous-time kinetic network that connects the reactant and product states. Its accuracy depends on both the quality of the underlying force fields and the trajectory sampling. The sampling error can be effectively controlled through various methods.
View Article and Find Full Text PDFDalton Trans
January 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)(esc)]ClO with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)(esc)]ClO with the Hammett constants of the substituents in 2,2'-bipy ligands.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
Combining piezocatalysts with mechanical ball milling for dissociating water to generate hydroxyl radicals (·OH) offers unprecedented opportunities for energy conversion and environmental remediation. However, the in-depth insights into the relationship between water and local polarization piezoelectric electric field (LPPEF) are currently lacking, in particularly, the ·OH formation mechanism in ball milling driven piezocatalyst system is not systematically elucidated. To this end, the present work constructs a ball milling driven piezoelectric solid/liquid interface between piezoelectric PbBOCl (PBOC) and different contents of water to investigate LPPEF initiated catalytic reaction.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Chemical kinetics for second oxygen addition reactions (·QOOH + O) of long-chain alkanes are of great importance in low-temperature combustion technologies. However, kinetic data for key reactions of ·QOOH + O systems are often difficult to obtain experimentally and are primarily estimated or calculated by using theoretical methods. In this work, barrier heights (BHs), reaction energies (Δs), and relative energies (REs) of stationary points for key reactions of two representative ·QOOH + O systems in the low-temperature oxidation of -butyl as well as pressure-dependent rate constants for the involved reactions are calculated with the high-level quantum chemical method CCSD(T)-F12b/CBS.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
AKTIBOki, Research Group in Physical Activity, Physical Exercise and Sport, Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain.
: The aim of this study was to analyze the repeatability and validity of different methods to determine the anaerobic threshold through a maximal multistage cycling test; : In total, 17 male endurance-trained athletes [7 cyclists and 10 triathletes, age 33.2 ± 6.9 yr, workload at maximal lactate steady state (MLSS) 268 ± 27 W] participated in the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!