Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or pi-pi-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or pi-pi-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or pi-pi-type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, k(CS) were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or pi-pi-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or pi-pi interactions on k(CS) and k(CR). Under these conditions, the measured electron transfer rates revealed faster k(CS) and slower k(CR) as compared to those obtained in the absence of added pyridine. The evaluated lifetimes of the radical ion-pairs were found to be hundreds of nanoseconds and were longer in the presence of pyridine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200500186 | DOI Listing |
J Phys Chem A
May 2024
Homi Bhabha National Institute, Training School Complex, Anushakthinagar, Mumbai 400094, India.
Organic fluorescent molecules have received considerable attention owing to their various optoelectronic applications. Herein, we report the design and synthesis of two cholesterol-functionalized cyanostyrene-phenothiazine-based D-π-A systems that are emissive in both the solution and solid states. The newly synthesized cholesterol-appended phenothiazine-cyanostyrene diads and vary in the -alkylation of phenothiazine, respectively, with─ and─ chains.
View Article and Find Full Text PDFAn Acad Bras Cienc
June 2023
Federal University of Goiás, Institute of Chemistry, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil.
Despite being little explored for petroporphyrins recovery from oils and bituminous shales, adsorption and desorption processes can be feasible alternatives to obtain a similar synthetic material, and to characterize their original organic materials. Experimental designs were used to analyze the effects of qualitative (e.g.
View Article and Find Full Text PDFChemosphere
April 2022
Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
Different phenolic compounds, including multimeric lignin derivatives in the β-O-4 form, are among the most prevalent compounds in wastewater, often generated from paper industries. Relatively small concentrations of lignin are hazardous to aquatic organisms and can trigger severe environmental hazards. Herein, we present a predictive toolset to insight the induced toxic hazards prediction, and their Lignin peroxidase (LiP)-assisted degradation mechanism of selected multimeric lignin model compounds.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
October 2021
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1XL, UK.
The synthesis, crystal structure and spectroscopic and electronic properties of N-(2-methyl-5-nitrophenyl)-4-(pyridin-2-yl)pyrimidin-2-amine (NPPA), CHNO, a potential template for drug design against chronic myelogenous leukemia (CML), is reported. The design and construction of the target molecule were carried out starting from the guanidinium nitrate salt (previously synthesized) and the corresponding enaminone. X-ray diffraction analysis and a study of the Hirshfeld surfaces revealed important interactions between the nitro-group O atoms and the H atoms of the pyridine and pyrimidine rings.
View Article and Find Full Text PDFInorg Chem
May 2021
Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 74690-900.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!