DNA microarrays are promising tools for fast and highly parallel DNA detection by means of fluorescence or gold nanoparticle labeling. However, substrate modification with silanes (as a prerequisite for capture DNA binding) often leads to inhomogeneous surfaces and/or nonspecific binding of the labeled DNA. We examined both different substrate cleaning and activating protocols and also different blocking strategies for optimizing the procedures, especially those for nanoparticle labeling. Contact angle measurements as well as fluorescence microscopy, atomic force microscopy (AFM), and a flatbed scanner were used to analyze the multiple-step process. Although the examined different cleaning and activating protocols resulted in considerably different contact angles, meaning different substrate wettability, silanization led to similar hydrophobic surfaces which could be revealed as smooth surfaces of about 2-4 nm roughness. The two examined silanes (3-glycidoxypropyltrimethoxysilane (GOPS) and 3-aminopropyltriethoxysilane (APTES)) differed in their DNA binding homogeneity, maximum signal intensities, and sensitivity. Nonspecific gold binding on APTES/PDC surfaces could be blocked by treatment in 3% bovine serum albumin (BSA).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-005-2524-4DOI Listing

Publication Analysis

Top Keywords

dna detection
8
nanoparticle labeling
8
dna binding
8
cleaning activating
8
activating protocols
8
dna
6
optimization gold
4
gold nanoparticle-based
4
nanoparticle-based dna
4
detection microarrays
4

Similar Publications

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection.

Nat Commun

December 2024

Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.

While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs.

View Article and Find Full Text PDF

Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!