In aged spontaneously hypertensive rats (SHR), vasorelaxant responses to NO are attenuated compared with normotensive control rats (Wistar-Kyoto [WKY]) because of a decreased expression of the important NO receptor soluble guanylyl cyclase (sGC). Because the expression of sGC subunits alpha1 and beta1 is controlled at the post-transcriptional level by the mRNA-binding protein human-antigen R (HuR), we now assessed whether or not altered expression of HuR could account for downregulation of sGCalpha1 and sGCbeta1 in genetic hypertension. The expression of HuR (and sGCalpha1 and sGCbeta1) in aortas from aged SHR was significantly decreased at the mRNA and protein level compared with age-matched WKY rats, whereas expression of HuR was not different in prehypertensive young (2 months of age) SHR and age-matched WKY rats. The mRNA-binding activity of HuR in native aortic protein extracts from aged SHR was markedly reduced compared with normotensive WKY rats, as detected by RNA electrophoretic mobility shift analysis, using biotin-labeled adenine and uracil (AU)-rich element (ARE)-containing RNA probes from the 3'-untranslated region of sGCalpha1 and sGCbeta1. In contrast, ARE-binding activity was not different between prehypertensive young SHR and young WKY rats. In vitro RNA degradation assays using the same AU-rich sGC mRNA probes revealed an accelerated sGCalpha1 and sGCbeta1 mRNA decay in the presence of native protein extract from hypertensive SHR, which was less rapid with aortic protein from normotensive WKY rats. These findings suggest that in this animal model of genetic hypertension, the reduced expression of sGC subunits is mediated by downregulation of the sGC mRNA-stabilizing protein HuR.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000165674.58470.8fDOI Listing

Publication Analysis

Top Keywords

wky rats
20
sgcalpha1 sgcbeta1
16
genetic hypertension
12
expression hur
12
human-antigen hur
8
protein hur
8
compared normotensive
8
expression sgc
8
sgc subunits
8
aged shr
8

Similar Publications

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters.

View Article and Find Full Text PDF

Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.

View Article and Find Full Text PDF

We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!