Cellular adhesion plays important roles in a variety of biological processes. The ADAM family contains disintegrin-like and metalloproteinase-like domains which potentially have cell adhesion and protease activities. Recent studies suggest that the interaction between 14-3-3zeta and ADAM22cyt can regulate cell adhesion and spreading, therefore it has a potential role in neural development and function. 14-3-3 family has seven highly conserved members that regulate various cellular functions. Using yeast two-hybrid method, we identified that ADAM22cyt bound some other 14-3-3 family members. The interaction was further confirmed by in vitro protein pull-down assay and co-immunoprecipitation. We also found that the overexpression of exogenous ADAM22 in HEK293 cells could significantly enhance cell adhesion and spreading, compared with the truncated ADAM22 lack of 14-3-3 binding motifs. These results strongly demonstrated a functional role for ADAM22/14-3-3 in cell adhesion and spreading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.03.229 | DOI Listing |
Annu Rev Plant Biol
January 2025
2UMRT INRAE 1158 BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France; email:
Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants.
View Article and Find Full Text PDFSci Adv
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Chronic wounds have emerged as a tough clinical challenge. An improved understanding of wound healing mechanisms is paramount. Collagen XVII (COL17), a pivotal constituent of hemidesmosomes, holds considerable promise for regulating epidermal cell adhesion to the basement membrane, as well as for epidermal cell motility and self-renewal of epidermal stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!