Objectives: Pulsed-laser deposition (PLD) is a development process to obtain hydroxyapatite (HA) thin film. It is an alternative to hydroxyapatite deposition techniques usually employed to cover orthopaedic or dental titanium implant surfaces. The aim of this study is to find out the characteristic ratio for Ca/P (1.66) deposit on titanium implant with the PLD process.

Methods: In a preliminary study, the coating parameters of pure and highly crystalline HA on Ti or Ti-6Al-4V substrates were verified by analysing the deposit by Rutherford backscattering spectroscopy (RBS). Ablation parameters to reach a stoichiometric hydroxyapatite composition (ideal Ca/P atomic ratio) and to control the growth of crystalline phases were: 575 degrees C for the substrate temperature, 0.4 mbar H2O vapour pressure in the ablation chamber, the target substrate distance was 40 mm and the deposition time was 120 min. In a second part, the film properties were analysed by means of XRD, SEM, AFM. The coating adhesion of the HA to the substrate was determined with a micro scratch tester.

Results: The analysed HA thin films showed a perfect crystallized and textured deposit. Sample observation and surface quality analysis demonstrated a surface roughness and adhesion of the films to the substrates compatible with biological applications.

Significance: These results suggest that pulsed-laser deposition is a suitable technique to obtain crystalline and adherent hydroxyapatite films on Ti or Ti-6Al-4V substrates. The quality of the HA deposit with the PLD process could be an interesting option for coating dental implant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2004.12.003DOI Listing

Publication Analysis

Top Keywords

pulsed-laser deposition
12
ti-6al-4v substrates
12
hydroxyapatite films
8
titanium implant
8
deposition
5
characterization hydroxyapatite
4
films
4
films pulsed-laser
4
deposition ti-6al-4v
4
substrates
4

Similar Publications

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness.

View Article and Find Full Text PDF

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!