SWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paired duplex DNA binds along a central cleft via both minor groove strands, indicating that SWI2/SNF2 ATPases travel along the dsDNA minor groove without strand separation. A structural switch, linking DNA binding and the active site DExx motif, may account for the stimulation of ATPase activity by dsDNA. Our results suggest that torque in remodeling processes is generated by an ATP-driven screw motion of DNA along the active site cleft. The structures also redefine SWI2/SNF2 functional motifs and uncover unexpected structural correlation of mutations in Cockayne and X-linked mental retardation syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2005.03.026 | DOI Listing |
Am J Hum Genet
December 2024
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China. Electronic address:
Methods Mol Biol
December 2024
Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan.
The recent development of the DNA-binding domain (DBD)-dynein chimera motors with a dynein motor core and a DNA-binding domain has made it possible to move on DNA nanostructure tracks. In contrast to naturally occurring cytoskeletal filaments such as microtubules and actin filaments, DNA tracks can be programmed with structural properties such as length, stiffness, and circumference. There might be many advantages to using DNA as a track, for example, for applications in nanotechnology.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China.
With the progress of society and the improvement of agricultural scientific technology, the single focus on high yield for rice production has gradually shifted to high quality. Coordinated development of grain yield and rice quality has become a core issue for researchers, and the underlying mechanisms remain to be solved. Two varieties, Zhongzheyou1 (ZZY1) and Zhongzheyou8 (ZZY8), were used as study materials under field conditions.
View Article and Find Full Text PDFPlant Physiol
December 2024
Institute of Biochemistry and Biophysics PAS, Warsaw 02-106, Poland.
The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
School of Life Sciences, Southwest University, Chongqing 400715, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!