Chromatin modifications on the inactive X chromosome.

Prog Mol Subcell Biol

Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA.

Published: August 2005

AI Article Synopsis

  • X-inactivation is a process in female mammals where one of the two X chromosomes is silenced to balance gene expression with male XY chromosome composition.
  • This silencing happens early in development, resulting in every cell having one active and one inactive X chromosome.
  • The inactive X chromosome gains specific epigenetic marks that help maintain its silenced state, and this review explores those features, the processes involved in establishing them, and their role in gene silencing.

Article Abstract

In female mammals, one X chromosome is transcriptionally silenced to achieve dosage compensation between XX females and XY males. This process, known as X-inactivation, occurs early in development, such that one X chromosome is silenced in every cell. Once X-inactivation has occurred, the inactive X chromosome is marked by a unique set of epigenetic features that distinguishes it from the active X chromosome and autosomes. These modifications appear sequentially during the transition from a transcriptionally active to an inactive state and, once established, act redundantly to maintain transcriptional silencing. In this review, we survey the unique epigenetic features that characterize the inactive X chromosome, describe the mechanisms by which these marks are established and maintained, and discuss how each contributes to silencing the inactive X chromosome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/3-540-27310-7_4DOI Listing

Publication Analysis

Top Keywords

inactive chromosome
16
epigenetic features
8
chromosome
7
inactive
5
chromatin modifications
4
modifications inactive
4
chromosome female
4
female mammals
4
mammals chromosome
4
chromosome transcriptionally
4

Similar Publications

infects the urogenital tract of men and women and causes the sexually transmitted infection trichomoniasis. Since the publication of its draft genome in 2007, the genome has drawn attention for several reasons, including its unusually large size, massive expansion of gene families, and high repeat content. The fragmented nature of the draft assembly made it challenging to obtain accurate metrics of features, such as spliceosomal introns.

View Article and Find Full Text PDF

Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!