Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including renal dysfunction. LPS triggers the synthesis and release of cytokines and the vasodilator nitric oxide (NO*). A major contributor to the increase in NO* production is LPS-stimulated expression of inducible nitric oxide synthase (iNOS). This occurs in vasculature and most organs including the kidney. During endotoxemia, NO* and superoxide react spontaneously to form the potent and versatile oxidant peroxynitrite (ONOO-) and the formation of 3-nitrotyrosine (nTyr)-protein adducts is a reliable biomarker of ONOO- generation. Therefore, the present study was aimed at investigating the role of endogenous nitric oxide in regulating Na+,K(+)-ATPase activity in the kidney, and at investigating the possible contribution of reactive nitrogen species (RNS) by measuring of iNOS activity. In addition, the present study was aimed at investigating the relationship between nTyr formation with iNOS and Na+,K(+)-ATPase activities. Previously in our study, nTyr was not detectable in kidney of normal control animals but was detected markedly in LPS exposed animals. In this study, kidney Na+,K(+)-ATPase activity were maximally inhibited 6 h after LPS injection (P:0.000) and LPS treatment significantly increased iNOS activity of kidney (P:0.000). The regression analysis revealed a very close correlation between Na+,K(+)-ATPase activity and nTyr levels of LPS treated animals (r = -0.868, P = 0.001). Na+,K(+)-ATPase activity were also negatively correlated with iNOS activity (r = -0.877, P = 0.001) in inflamed kidney. These data suggest that NO* and ONOO- contribute to the development of oxidant injury. Furthermore, the source of NO* may be iNOS. iNOS are expressed by the kidney, and their activity may increase following LPS administration. In addition, NO* and ONOO- formation inhibited Na+,K(+)-ATPase activity. This results also have strongly suggested that bacterial LPS disturbs activity of membrane Na+,K(+)-ATPase that may be an important component leading to the pathological consequences such as renal dysfunction in which the production of RNS are increased as in the case of LPS challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-005-5616-1 | DOI Listing |
J Assist Reprod Genet
December 2024
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.
Purpose: Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization.
View Article and Find Full Text PDFVet Sci
November 2024
Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia.
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.
Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.
Curr Issues Mol Biol
December 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!