Angiotensin II type 2 receptor (AT2-R) overexpression in the mouse heart preserves left ventricular (LV) size and global LV function during post-MI remodeling. We hypothesized that CMR tagging would localize regional improvements in myocardial function during post-MI remodeling in AT2-R cardiac overexpressed transgenic mice (TG), which could explain the preservation of global LV function post-MI. Six male wild-type (WT) C57BL/6 mice and 10 TG mice were studied by CMR at baseline (day 0) and days 1, 7, and 28 post-MI. MI was induced by 1 hour occlusion of the LAD followed by reperfusion. On day 1 post-MI, gadolinium-DTPA was injected to assess infarct size. LV size and function was assessed by cine CMR. Mean % circumferential shortening (%CS) was calculated within infarcted, adjacent, and remote regions at each time point in WT and TG mice. Quantitative interstitial collagen and mean myocyte cross-sectional area was measured postmortem at day 28 post-MI. LV end-systolic volume was lower and ejection fraction higher at baseline in the TG group and these differences were maintained post-MI. Within infarcted and remote zones, although %CS was higher in TG mice at day 0, there was no difference by day 28 between groups. Within adjacent regions, while there was no difference at day 0 or 1 in TG vs. WT, %CS was significantly higher in TG mice by day 7, and these changes persisted out to day 28 post-MI. Regional interstitial collagen and myocyte size were similar between groups. Thus, myocardial tagging can detect regional differences in contractile function post-MI in TG mice, and AT2-R overexpression is associated with improved contractile function in adjacent noninfarcted myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1081/jcmr-200053461DOI Listing

Publication Analysis

Top Keywords

function post-mi
20
day post-mi
12
post-mi
10
angiotensin type
8
type receptor
8
at2-r overexpression
8
global function
8
post-mi remodeling
8
day
8
interstitial collagen
8

Similar Publications

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Microvessel co-transplantation improves poor remuscularization by hiPSC-cardiomyocytes in a complex disease model of myocardial infarction and type 2 diabetes.

Stem Cell Reports

January 2025

Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada; Ajmera Transplant Center, University Health Network, Toronto, ON, Canada. Electronic address:

People with type 2 diabetes (T2D) are at a higher risk for myocardial infarction (MI) than age-matched healthy individuals. Here, we studied cell-based cardiac regeneration post MI in T2D rats modeling the co-morbid conditions in patients with MI. We recapitulated the T2D hallmarks and clinical aspects of diabetic cardiomyopathy using high-fat diet and streptozotocin in athymic rats, which were then subjected to MI and intramyocardial implantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with or without rat adipose-derived microvessels (MVs).

View Article and Find Full Text PDF

Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects.

View Article and Find Full Text PDF

Downregulation of CCR2 reduces ventricular remodeling after myocardial infarction by splenic nerve neuromodulation in acute and chronic rat models.

Int Immunopharmacol

January 2025

Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China. Electronic address:

Objectives: Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism.

View Article and Find Full Text PDF

Purpose: Cardiac fibrosis, a key contributor to ventricular pathologic remodeling and heart failure, currently lacks effective therapeutic approaches.

Patients And Methods: Small extracellular vesicles from young healthy human plasma (Young-sEVs) were characterized via protein marker, transmission electron microscopy, and nanoparticle tracking analysis, then applied in cellular models and mouse models of cardiac fibrosis. Western blotting and qRT-PCR were used to identify protective signaling pathways in cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!