Variations of the gravitational field affected by the Sun and the Moon while the Earth's moving along the orbit seem to be a powerful source of many rhythmical processes typical of biochemical processes. Studies carried out in AARI revealed the obvious relationships between the dynamics of some biochemical reactions and lambda(D)-function describing the regular variations of the gravitational field under combined influence of the Sun and the Moon. The following of them are examined as examples: the rate of the unithiol oxidation in vitro, concentration of the thiol compounds in human urine, some hematological indicators (rate of the erythrocytes sedimentation, hemoglobin content). Compatibility of run of the biochemical indicators and lambda(D)-function is indicative of essential influence of the regular variations of the gravitational field on rhythmics of the biochemical processes. As this takes place, the solar activity acts like to the instability factor. Balance of the solar activity effects and the varying gravitational field effect alter in time depending on location in the solar activity cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.asr.2004.02.013DOI Listing

Publication Analysis

Top Keywords

gravitational field
20
variations gravitational
16
biochemical processes
12
solar activity
12
rhythmics biochemical
8
sun moon
8
regular variations
8
field
5
biochemical
5
variations
4

Similar Publications

Particle manipulation under X-force fields.

Lab Chip

January 2025

Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.

Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications.

View Article and Find Full Text PDF

We describe a modification of a previously described measurement-analysis protocol to determine the intrinsic properties of triaxial accelerometers by using a measurement protocol based on angular stepwise rotation in the Earth's gravitational field. This study was conducted with MEMS triaxial accelerometers that were co-integrated in four consumer-grade wireless microsensors. The measurements were carried out on low-cost rotation tables in different laboratories in different countries to simulate the reproducibility environment encountered in inter-comparisons of calibration capabilities.

View Article and Find Full Text PDF

The phase rule of Gibbs is one of the basic equations in phase equilibria. Although it has been with us for 150 years, discussions, interpretations and extensions have been published. Here, the following new content is provided: (i).

View Article and Find Full Text PDF

The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox.

Entropy (Basel)

November 2024

Terra Quantum AG, Kornhausstrasse 25, 9000 St. Gallen, Switzerland.

We present the Quantum Memory Matrix (QMM) hypothesis, which addresses the longstanding Black Hole Information Paradox rooted in the apparent conflict between Quantum Mechanics (QM) and General Relativity (GR). This paradox raises the question of how information is preserved during black hole formation and evaporation, given that Hawking radiation appears to result in information loss, challenging unitarity in quantum mechanics. The QMM hypothesis proposes that space-time itself acts as a dynamic quantum information reservoir, with quantum imprints encoding information about quantum states and interactions directly into the fabric of space-time at the Planck scale.

View Article and Find Full Text PDF

Curvature Dependence of Gravitational-Wave Tests of General Relativity.

Phys Rev Lett

December 2024

Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.

High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!