We report on the use of 125I and 131I labeling and of new, multicolor, multi-photon detection (MPD) methods to routinely and quantitatively detect protein spots on two-dimensional gel electrophoresis plates in the zeptomole to attomole range. We demonstrate that the MPD methodology can be used to detect radioactive labels on two-dimensional gels and has several characteristics that are advantageous for functional proteomics. First, by using single particle detectors, the sensitivity for detection of radiolabels can be improved dramatically. Second, because single particle detectors can differentiate the particle energies produced by different decay processes, it is possible to choose combinations of radioisotopes that can be detected and quantified individually on the same 2-D gel. Third, the MPD technology is essentially linear over six to seven orders of magnitude, i.e., it is possible to accurately quantify radiolabeled proteins over a range from at least 60 zeptomoles to 60 femtomoles. Finally for radionuclides that decay by electron capture, e.g., with emission of both beta and gamma rays, co-incident detection of two particles/photons can be used to detect such radionuclides well below background radiation levels. These methods are used to monitor acidic/phosphorylated proteins in as little as 60 ng of HeLa cells proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200401271 | DOI Listing |
J Phys Chem A
December 2024
Radboud University Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.
View Article and Find Full Text PDFAVS Quantum Sci
December 2024
Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Single-photon detectors (SPDs) are ubiquitous in many protocols for quantum imaging, sensing, and communications. Many of these protocols critically depend on the precise knowledge of their detection efficiency. A method for the calibration of SPDs based on sources of quantum-correlated photon pairs uses single-photon detection to generate heralded single photons, which can be used as a standard of radiation at the single-photon level.
View Article and Find Full Text PDFMulti-photon Fock states have diverse applications such as optical quantum information processing. For the implementation of quantum information processing, Fock states should be generated within the telecommunication wavelength band, particularly in the C-band (1530-1565 nm). This is because mature optical communication technologies can be leveraged for transmission, manipulation, and detection.
View Article and Find Full Text PDFThe research focused on enhancing the measurement accuracy through the use of non-Gaussian states has garnered increasing attention. In this study, we propose a scheme to input the coherent state mixed with a photon-catalyzed squeezed vacuum state into the Mach-Zender interferometer to enhance phase measurement accuracy. The findings demonstrate that photon catalysis, particularly multi-photon catalysis, can effectively improve the phase sensitivity of parity detection and the quantum Fisher information.
View Article and Find Full Text PDFAnn Surg
September 2024
Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine; Tsu, Japan.
Objective: In living tissue, it has been difficult to make microscopic-level observations without damaging the tissue.
Summary Background Data: We have invented a novel intravital fluorescent observation method (IFOM) for real-time tissue observation, combining multi-photon laser scanning microscopy (MPLSM) with curcumin vital staining (CVS-IFOM). The aim of this study was to use CVS-IFOM to analyze the enteric nervous system (ENS) in mice and human patients with hypoganglionosis and Hirschsprung disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!