From the study of highly preorganized model systems, experimental support has been obtained for a possible functional role of the Zn-(H)O...HO(H)-Zn motif in oligozinc hydrolases. The mechanistic relevance of such an array, which may be described as a hydrated form of a pseudo-terminal Zn-bound hydroxide, has recently been supported by DFT calculations on various metallohydrolase active sites. In the present targeted approach, the Zn...Zn distance in two related dizinc complexes has been controlled through the use of multifunctional pyrazolate-based ligand scaffolds, giving either a tightly bridged Zn-O(H)-Zn or a more loosely bridged Zn-(H)O...HO(H)-Zn species in the solid state. Zn-bound water has been found to exhibit comparable acidity irrespective of whether the resulting hydroxide is supported by strong hydrogen-bonding in the O(2)H(3) moiety or is in a bridging position between two zinc ions, indicating that water does not necessarily have to adopt a bridging position in order for its pK(a) to be sufficiently lowered so as to provide a Zn-bound hydroxide at physiological pH. Comparative reactivity studies on the cleavage of bis(4-nitrophenyl)phosphate (BNPP) mediated by the two dizinc complexes have revealed that the system with the larger Zn...Zn separation is hydrolytically more potent, both in the hydrolysis and the transesterification of BNPP. The extent of active site inhibition by the reaction products has also been found to be governed by the Zn...Zn distance, since phosphate diester coordination in a bridging mode within the clamp of two zinc ions is only favored for Zn...Zn distances well above 4 A. Different binding affinities are rationalized in terms of the structural characteristics of the product-inhibited complexes for the two different ligand scaffolds, with dimethyl phosphate found as a bridging ligand within the bimetallic pocket.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200400932 | DOI Listing |
Nanomaterials (Basel)
December 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
MgZnO possesses a tunable bandgap and can be prepared at relatively low temperatures, making it suitable for developing optoelectronic devices. MgZnO (~0.1) films were grown on sapphire by metal-organic vapor phase epitaxy under different substrate-growth temperatures of 350-650 °C and studied by multiple characterization technologies like X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Raman scattering, extended X-ray absorption fine structure (EXAFS), and first-principle calculations.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.
Aqueous zinc-ion batteries (AZIBs), one of the most promising renewable energy storage devices, are largely impeded by the disreputable cycling stability in its large-scale application as a result of the undesirable Zn dendrites growth and the side reactions. In this context, a carboxylate (-COO) anionic group functionalized cellulose nanofibrils separator (A-CNF) with nanoporous structure and ion-sieving effect is developed to realize a stable Zn anode without dendrites and by-products. An increased Zn transference number and uniform Zn deposition can be achieved through the electrostatic adsorption between -COO and Zn.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Yulin Innovation Institute of Clean Energy, Yulin 719053, China.
High-safety aqueous zinc (Zn) ion batteries are troubled by dendrite growth and hydrogen evolution reaction on Zn anode, which can be well solved via the construction of surface protective layer. The recent researches mainly focus on the bulk property of the protective layer, but its separation from Zn anode is ignored. In this work, high-viscoelasticity alginate-based (HVAA) layer was in-situ constructed on Zn anodes by the cross-linking of sodium alginate with formaldehyde and the plastifying of glycerin.
View Article and Find Full Text PDFSmall
October 2024
Energy Storage Research Department, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea.
The two most critical technical issues in Zn-based batteries, dendrite formation, and hydrogen evolution reaction, can be simultaneously addressed by introducing negatively charged fibrous ZrO as a separator. Electron redistribution between ZrO and Zn ions renders the ZrO surface a preferred adsorption site for Zn ions, making surface conduction the primary ion-transport mode. Surface conduction enables fibrous ZrO to exhibit a 6.
View Article and Find Full Text PDFLangmuir
October 2024
School of Material Science & Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
Hydrogel electrolytes have been widely explored in flexible zinc batteries owing to their considerable mechanical strain and water-retaining properties. However, it is difficult to balance the contradiction between the ionic conductivity and the mechanical strength due to the deterioration of structural stability with the addition of electrolyte salts. To address this, we designed a coassembling organic-inorganic hydrogel (P-P/M) based on poly(vinyl alcohol)-polyacrylamide (P-P) interpenetrating matrix decorated with Zn-based montmorillonite (Zn-MMT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!